网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

流式写入Hudi表

更新时间:2024-11-26 GMT+08:00
分享
说明:

本章节仅适用于MRS 3.3.1-LTS及之前版本。

HoodieDeltaStreamer流式写入

Hudi自带HoodieDeltaStreamer工具支持流式写入,也可以使用SparkStreaming以微批的方式写入。HoodieDeltaStreamer提供以下功能:

  • 支持Kafka,DFS多种数据源接入 。
  • 支持管理检查点、回滚和恢复,保证exactly once语义。
  • 支持自定义转换操作。

示例:

准备配置文件kafka-source.properties

#hudi配置
hoodie.datasource.write.recordkey.field=id
hoodie.datasource.write.partitionpath.field=age
hoodie.upsert.shuffle.parallelism=100
#hive config
hoodie.datasource.hive_sync.table=hudimor_deltastreamer_partition
hoodie.datasource.hive_sync.partition_fields=age
hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtractor
hoodie.datasource.hive_sync.use_jdbc=false
hoodie.datasource.hive_sync.support_timestamp=true
# Kafka Source topic
hoodie.deltastreamer.source.kafka.topic=hudimor_deltastreamer_partition
#checkpoint
hoodie.deltastreamer.checkpoint.provider.path=hdfs://hacluster/tmp/huditest/hudimor_deltastreamer_partition
# Kafka props
# The kafka cluster we want to ingest from
bootstrap.servers= xx.xx.xx.xx:xx
auto.offset.reset=earliest
#auto.offset.reset=latest
group.id=hoodie-delta-streamer
offset.rang.limit=10000

指定HoodieDeltaStreamer执行参数(具体参数配置,请查看官网https://hudi.apache.org/ )执行如下命令:

spark-submit --master yarn

--jars /opt/hudi-java-examples-1.0.jar // 指定spark运行时需要的hudi jars路径

--driver-memory 1g

--executor-memory 1g --executor-cores 1 --num-executors 2 --conf spark.kryoserializer.buffer.max=128m

--driver-class-path /opt/client/Hudi/hudi/conf:/opt/client/Hudi/hudi/lib/*:/opt/client/Spark2x/spark/jars/*:/opt/hudi-examples-0.6.1-SNAPSHOT.jar:/opt/hudi-examples-0.6.1-SNAPSHOT-tests.jar // 指定spark driver需要的hudi jars路径

--class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer spark-internal

--props file:///opt/kafka-source.properties // 指定配置文件,注意:使用yarn-cluster模式提交任务时,请指定配置文件路径为HDFS路径。

--target-base-path /tmp/huditest/hudimor1_deltastreamer_partition // 指定hudi表路径

--table-type MERGE_ON_READ // 指定要写入的hudi表类型

--target-table hudimor_deltastreamer_partition // 指定hudi表名

--source-ordering-field name // 指定hudi表预合并列

--source-class org.apache.hudi.utilities.sources.JsonKafkaSource // 指定消费的数据源为JsonKafkaSource, 该参数根据不同数据源指定不同的source类

--schemaprovider-class com.huaweixxx.bigdata.hudi.examples.DataSchemaProviderExample // 指定hudi表所需要的schema

--transformer-class com.huaweixxx.bigdata.hudi.examples.TransformerExample // 指定如何处理数据源拉取来的数据,可根据自身业务需求做定制

--enable-hive-sync // 开启hive同步,同步hudi表到hive

--continuous // 指定流处理模式为连续模式

HoodieMultiTableDeltaStreamer流式写入

说明:

HoodieMultiTableDeltaStreamer流式写入仅适用于MRS 3.2.0及之后版本。

HoodieDeltaStreamer支持从多种类型的源表抓取数据写入Hudi目标表,但是HoodieDeltaStreamer只能完成一个源表更新一个目标表。而HoodieMultiTableDeltaStreamer可以完成多个源表更新多个目标表,也可以完成多个源表更新一个目标表。

  • 多个源表写一个目标表(两个kafka source写一个Hudi表):
    说明:

    主要配置:

    // 指定目标表
    hoodie.deltastreamer.ingestion.tablesToBeIngested=目录名.目标表
    // 指定所有的源表给特定目标表
    hoodie.deltastreamer.source.sourcesBoundTo.目标表=目录名.源表1,目录名.源表2
    // 指定每个源表的配置文件路径
    hoodie.deltastreamer.source.目录名.源表1.configFile=路径1
    hoodie.deltastreamer.source.目录名.源表2.configFile=路径2
    // 指定每个源表的恢复点,source类型不同,恢复点的格式也不同。如kafka soruce格式为"topic名,分区名:offset"
    hoodie.deltastreamer.current.source.checkpoint=topic名,分区名:offset
    // 指定每个源表的关联表(hudi表),如果有多个用逗号隔开
    hoodie.deltastreamer.source.associated.tables=hdfs://hacluster/.....,hdfs://hacluster/.....
    // 指定每个源表的数据在写入hudi前的transform操作,注意需要明确列出需要写入的列,不要使用select *
    // <SRC>代表当前source表,不要替换,这是固定写法
    hoodie.deltastreamer.transformer.sql=select field1,field2,field3,... from <SRC>

    Spark提交命令:

    spark-submit \
    --master yarn \
    --driver-memory 1g \
    --executor-memory 1g \
    --executor-cores 1 \
    --num-executors 5 \
    --conf spark.driver.extraClassPath=/opt/client/Hudi/hudi/conf:/opt/client/Hudi/hudi/lib/*:/opt/client/Spark2x/spark/jars/* \
    --class org.apache.hudi.utilities.deltastreamer.HoodieMultiTableDeltaStreamer /opt/client/Hudi/hudi/lib/hudi-utilities_2.12-*.jar \
    --props file:///opt/hudi/testconf/sourceCommon.properties \
    --config-folder file:///opt/hudi/testconf/ \
    --source-class org.apache.hudi.utilities.sources.JsonKafkaSource \
    --schemaprovider-class org.apache.hudi.examples.common.HoodieMultiTableDeltaStreamerSchemaProvider \
    --transformer-class org.apache.hudi.utilities.transform.SqlQueryBasedTransformer \
    --source-ordering-field col6 \
    --base-path-prefix hdfs://hacluster/tmp/ \
    --table-type COPY_ON_WRITE \
    --target-table KafkaToHudi \
    --enable-hive-sync \
    --allow-fetch-from-multiple-sources \
    --allow-continuous-when-multiple-sources
    说明:
    1. 当“source”的类型是“kafka source”时,“--schemaprovider-class”指定的schema provider类需要用户自己开发。
    2. “--allow-fetch-from-multiple-sources”表示开启多源表写入。
    3. “--allow-continuous-when-multiple-sources”表示开启多源表持续写入,如果未设置所有源表写入一次后任务就会结束。

    sourceCommon.properties :

    hoodie.deltastreamer.ingestion.tablesToBeIngested=testdb.KafkaToHudi
    hoodie.deltastreamer.source.sourcesBoundTo.KafkaToHudi=source1,source2
    hoodie.deltastreamer.source.default.source1.configFile=file:///opt/hudi/testconf/source1.properties
    hoodie.deltastreamer.source.default.source2.configFile=file:///opt/hudi/testconf/source2.properties
    
    hoodie.datasource.write.keygenerator.class=org.apache.hudi.keygen.SimpleKeyGenerator
    hoodie.datasource.write.partitionpath.field=col0
    hoodie.datasource.write.recordkey.field=primary_key
    hoodie.datasource.write.precombine.field=col6
    
    hoodie.datasource.hive_sync.table=kafkatohudisync
    hoodie.datasource.hive_sync.partition_fields=col0
    hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtractor
    
    bootstrap.servers=192.168.34.221:21005,192.168.34.136:21005,192.168.34.175:21005
    auto.offset.reset=latest
    group.id=hoodie-test

    source1.properties:

    hoodie.deltastreamer.current.source.name=source1 // kafka topic的名称有时候可读性很差,所以这里给它取个别名当作source的名称
    hoodie.deltastreamer.source.kafka.topic=s1
    hoodie.deltastreamer.current.source.checkpoint=s1,0:0,1:0 // 任务启动时,该source的恢复点(从0分区的0 offset,1分区的0 offset开始恢复)
    // 指定与source1表进行join的hudi表,如果该hudi表已经同步到hive,则不需要该配置,直接在sql中通过表名来使用
    hoodie.deltastreamer.source.associated.tables=hdfs://hacluster/tmp/huditest/tb_test_cow_par
    // <SRC>代表当前的source表,即source1,固定写法
    hoodie.deltastreamer.transformer.sql=select A.primary_key, A.col0, B.col1, B.col2, A.col3, A.col4, B.col5, B.col6, B.col7 from <SRC> as A join tb_test_cow_par as B on A.primary_key = B.primary_key

    source2.properties

    hoodie.deltastreamer.current.source.name=source2
    hoodie.deltastreamer.source.kafka.topic=s2
    hoodie.deltastreamer.current.source.checkpoint=s2,0:0,1:0
    hoodie.deltastreamer.source.associated.tables=hdfs://hacluster/tmp/huditest/tb_test_cow_par
    hoodie.deltastreamer.transformer.sql=select A.primary_key, A.col0, B.col1, B.col2, A.col3, A.col4, B.col5, B.col6, B.col7 from <SRC> as A join tb_test_cow_par as B on A.primary_key = B.primary_key
  • 多个源表写一个目标表(两个Hudi表source写一个Hudi表):

    Spark提交命令:

    spark-submit \
    --master yarn \
    --driver-memory 1g \
    --executor-memory 1g \
    --executor-cores 1 \
    --num-executors 2 \
    --conf spark.driver.extraClassPath=/opt/client/Hudi/hudi/conf:/opt/client/Hudi/hudi/lib/*:/opt/client/Spark2x/spark/jars/* \
    --class org.apache.hudi.utilities.deltastreamer.HoodieMultiTableDeltaStreamer /opt/client/Hudi/hudi/lib/hudi-utilities_2.12-*.jar \
    --props file:///opt/testconf/sourceCommon.properties \
    --config-folder file:///opt/testconf/ \
    --source-class org.apache.hudi.utilities.sources.HoodieIncrSource \ //指定source的类型是Hudi表,作为源表的Hudi表只能是COW类型
    --payload-class org.apache.hudi.common.model.OverwriteNonDefaultsWithLatestAvroPayload \ //指定一个payload, payload决定了新值更新旧值的方式。
    --transformer-class org.apache.hudi.utilities.transform.SqlQueryBasedTransformer \ //指定一个transformer类,源表schema和目标表的schema不一致时,源表的数据需要进行transform才能写入目标表。
    --source-ordering-field col6 \
    --base-path-prefix hdfs://hacluster/tmp/ \ //目标表的存放路径
    --table-type MERGE_ON_READ \ //目标表的类型,可以是COW表也可以是MOR表。
    --target-table tb_test_mor_par_300 \ //指定目标表的表名,多源表更新单表时,目标表的表名必须给出。
    --checkpoint 000 \ //指定一个检查点(commit时间戳),表明从此检查点恢复Delta Streamer,000代表从头开始。
    --enable-hive-sync \
    --allow-fetch-from-multiple-sources \
    --allow-continuous-when-multiple-sources \
    --op UPSERT //指定写操作类型
    说明:
    • 当“source”的类型是“HoodieIncrSourc”时,不需要指定“--schemaprovider-class”。
    • “--transformer-class”指定SqlQueryBasedTransformer,可以通过SQL来操作数据转换,将源数据结构转换成目标表数据结构。

    file:///opt/testconf/sourceCommon.properties:

    # source的公共属性
    hoodie.deltastreamer.ingestion.tablesToBeIngested=testdb.tb_test_mor_par_300 //指定一个目标表。多源表写单目标表,所以目标表可以作为公共属性。
    hoodie.deltastreamer.source.sourcesBoundTo.tb_test_mor_par_300=testdb.tb_test_mor_par_100,testdb.tb_test_mor_par_200 //指定多个源表。
    hoodie.deltastreamer.source.testdb.tb_test_mor_par_100.configFile=file:///opt/testconf/tb_test_mor_par_100.properties //源表tb_test_mor_par_100的属性文件路径
    hoodie.deltastreamer.source.testdb.tb_test_mor_par_200.configFile=file:///opt/testconf/tb_test_mor_par_200.properties //源表tb_test_mor_par_200的属性文件路径
    
    # 所有source公用的hudi写配置,source独立的配置需要写到自己对应的属性文件中
    hoodie.datasource.write.keygenerator.class=org.apache.hudi.keygen.SimpleKeyGenerator
    hoodie.datasource.write.partitionpath.field=col0
    hoodie.datasource.write.recordkey.field=primary_key
    hoodie.datasource.write.precombine.field=col6

    file:///opt/testconf/tb_test_mor_par_100.properties

    # 源表tb_test_mor_par_100的配置
    hoodie.deltastreamer.source.hoodieincr.path=hdfs://hacluster/tmp/testdb/tb_test_mor_par_100 //源表的路径
    hoodie.deltastreamer.source.hoodieincr.partition.fields=col0 //源表的分区键
    hoodie.deltastreamer.source.hoodieincr.read_latest_on_missing_ckpt=false
    hoodie.deltastreamer.source.associated.tables=hdfs://hacluster/tmp/testdb/tb_test_mor_par_400 //指定与源表进行关联操作的表
    hoodie.deltastreamer.transformer.sql=select A.primary_key, A.col0, B.col1, B.col2, A.col3, A.col4, B.col5, A.col6, B.col7 from <SRC> as A join tb_test_mor_par_400 as B on A.primary_key = B.primary_key //该配置在transformer类指定为SqlQueryBasedTransformer才会生效
    file:///opt/testconf/tb_test_mor_par_200.properties
    # 源表tb_test_mor_par_200的配置
    hoodie.deltastreamer.source.hoodieincr.path=hdfs://hacluster/tmp/testdb/tb_test_mor_par_200
    hoodie.deltastreamer.source.hoodieincr.partition.fields=col0
    hoodie.deltastreamer.source.hoodieincr.read_latest_on_missing_ckpt=false
    hoodie.deltastreamer.source.associated.tables=hdfs://hacluster/tmp/testdb/tb_test_mor_par_400
    hoodie.deltastreamer.transformer.sql=select A.primary_key, A.col0, B.col1, B.col2, A.col3, A.col4, B.col5, A.col6, B.col7 from <SRC> as A join tb_test_mor_par_400 as B on A.primary_key = B.primary_key //源表数据结构转换为目标表的数据结构。该源表如果需要和Hive进行关联操作,可以直接在SQL中通过表名来进行关联操作;该源表如果需要和Hudi表关联操作,需要先指定Hudi表的路径,然后在SQL中通过表名来进行关联操作。
    
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容