更新时间:2024-12-17 GMT+08:00
分享

Flink Join样例程序(Java)

功能介绍

在Flink应用中,调用flink-connector-kafka模块的接口,生产并消费数据。

代码样例

用户在开发前需要使用对接安全模式的Kafka,则需要引入kafka-clients-*.jar,该jar包可在client目录下获取。

下面列出producer和consumer,以及Flink Stream SQL Join使用主要逻辑代码作为演示。

完整代码参见com.huawei.bigdata.flink.examples.WriteIntoKafka和com.huawei.bigdata.flink.examples.SqlJoinWithSocket

  1. 每秒钟往Kafka中生产一条用户信息,用户信息由姓名、年龄、性别组成。
    //producer代码
    public class WriteIntoKafka {
    
          public static void main(String[] args) throws Exception {
    
          // 打印出执行flink run的参考命令
            System.out.println("use command as: ");
    
            System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.WriteIntoKafka" +
    
               " /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:9092");
    
            System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.WriteIntoKafka" +
    
               " /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:21007 --security.protocol SASL_PLAINTEXT --sasl.kerberos.service.name kafka");
    
            System.out.println("******************************************************************************************");
    
            System.out.println("<topic> is the kafka topic name");
    
            System.out.println("<bootstrap.servers> is the ip:port list of brokers");
    
            System.out.println("******************************************************************************************");
           
            // 构造执行环境
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            // 设置并发度
            env.setParallelism(1);
            // 解析运行参数
            ParameterTool paraTool = ParameterTool.fromArgs(args);
            // 构造流图,将自定义Source生成的数据写入Kafka
            DataStream<String> messageStream = env.addSource(new SimpleStringGenerator());
    
            FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(paraTool.get("topic"),
    
               new SimpleStringSchema(),
    
               paraTool.getProperties());
    
            producer.setWriteTimestampToKafka(true);
    
            messageStream.addSink(producer);
    
            // 调用execute触发执行
            env.execute();
         }
    
    // 自定义Source,每隔1s持续产生消息
    public static class SimpleStringGenerator implements SourceFunction<String> {
            static final String[] NAME = {"Carry", "Alen", "Mike", "Ian", "John", "Kobe", "James"};
    
            static final String[] SEX = {"MALE", "FEMALE"};
    
            static final int COUNT = NAME.length;   
    
            boolean running = true;
    
            Random rand = new Random(47);
    
           @Override
            //rand随机产生名字,性别,年龄的组合信息
             public void run(SourceContext<String> ctx) throws Exception {
    
                while (running) {
    
                    int i = rand.nextInt(COUNT);
    
                    int age = rand.nextInt(70);
    
                    String sexy = SEX[rand.nextInt(2)];
    
                    ctx.collect(NAME[i] + "," + age + "," + sexy);
    
                    thread.sleep(1000);
    
                }
    
        }
    
           @Override
    
           public void cancel() {
    
             running = false;
    
           }
    
         }
    
       }
  2. 生成Table1和Table2,并使用Join对Table1和Table2进行联合查询,打印输出结果。
    public class SqlJoinWithSocket {
        public static void main(String[] args) throws Exception{
    
            final String hostname;
    
            final int port;
    
            System.out.println("use command as: ");
    
            System.out.println("flink run --class com.huawei.bigdata.flink.examples.SqlJoinWithSocket" +
                    " /opt/test.jar --topic topic-test -bootstrap.servers xxxx.xxx.xxx.xxx:9092 --hostname xxx.xxx.xxx.xxx --port xxx");
    
            System.out.println("flink run --class com.huawei.bigdata.flink.examples.SqlJoinWithSocket" +
                    " /opt/test.jar --topic topic-test -bootstrap.servers xxxx.xxx.xxx.xxx:21007 --security.protocol SASL_PLAINTEXT --sasl.kerberos.service.name kafka"
                    + "--hostname xxx.xxx.xxx.xxx --port xxx");
    
            System.out.println("******************************************************************************************");
            System.out.println("<topic> is the kafka topic name");
            System.out.println("<bootstrap.servers> is the ip:port list of brokers");
            System.out.println("******************************************************************************************");
    
            try {
                final ParameterTool params = ParameterTool.fromArgs(args);
    
                hostname = params.has("hostname") ? params.get("hostname") : "localhost";
    
                port = params.getInt("port");
    
            } catch (Exception e) {
                System.err.println("No port specified. Please run 'FlinkStreamSqlJoinExample " +
                        "--hostname <hostname> --port <port>', where hostname (localhost by default) " +
                        "and port is the address of the text server");
    
                System.err.println("To start a simple text server, run 'netcat -l -p <port>' and " +
                        "type the input text into the command line");
    
                return;
            }
            
            EnvironmentSettings fsSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);
    
            //基于EventTime进行处理
            env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
    
            env.setParallelism(1);
    
            ParameterTool paraTool = ParameterTool.fromArgs(args);
    
            //Stream1,从Kafka中读取数据
            DataStream<Tuple3<String, String, String>> kafkaStream = env.addSource(new FlinkKafkaConsumer<>(paraTool.get("topic"),
                    new SimpleStringSchema(),
                    paraTool.getProperties())).map(new MapFunction<String, Tuple3<String, String, String>>() {
                @Override
                public Tuple3<String, String, String> map(String s) throws Exception {
                    String[] word = s.split(",");
    
                    return new Tuple3<>(word[0], word[1], word[2]);
                }
            });
    
            //将Stream1注册为Table1
            tableEnv.registerDataStream("Table1", kafkaStream, "name, age, sexy, proctime.proctime");
    
            //Stream2,从Socket中读取数据
            DataStream<Tuple2<String, String>> socketStream = env.socketTextStream(hostname, port, "\n").
                    map(new MapFunction<String, Tuple2<String, String>>() {
                        @Override
                        public Tuple2<String, String> map(String s) throws Exception {
                            String[] words = s.split("\\s");
                            if (words.length < 2) {
                                return new Tuple2<>();
                            }
    
                            return new Tuple2<>(words[0], words[1]);
                        }
                    });
    
            //将Stream2注册为Table2
            tableEnv.registerDataStream("Table2", socketStream, "name, job, proctime.proctime");
    
            //执行SQL Join进行联合查询
            Table result = tableEnv.sqlQuery("SELECT t1.name, t1.age, t1.sexy, t2.job, t2.proctime as shiptime\n" +
                    "FROM Table1 AS t1\n" +
                    "JOIN Table2 AS t2\n" +
                    "ON t1.name = t2.name\n" +
                    "AND t1.proctime BETWEEN t2.proctime - INTERVAL '1' SECOND AND t2.proctime + INTERVAL '1' SECOND");
    
            //将查询结果转换为Stream,并打印输出
            tableEnv.toAppendStream(result, Row.class).print();
    
            env.execute();
        }
    }

相关文档