MapReduce应用开发简介
Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。
一个MapReduce作业(application/job)通常会把输入的数据集切分为若干独立的数据块,由map任务(task)以完全并行的方式来处理。框架会对map的输出先进行排序,然后把结果输入给reduce任务,最后返回给客户端。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。
MapReduce主要特点如下:
- 大规模并行计算
- 适用于大型数据集
- 高容错性和高可靠性
- 合理的资源调度