文档首页/
MapReduce服务 MRS/
开发指南(普通版_2.x)/
Spark开发指南/
Spark应用开发常见问题/
执行Spark Core应用,尝试收集大量数据到Driver端,当Driver端内存不足时,应用挂起不退出
更新时间:2024-06-14 GMT+08:00
执行Spark Core应用,尝试收集大量数据到Driver端,当Driver端内存不足时,应用挂起不退出
问题
执行Spark Core应用,尝试收集大量数据到Driver端,当Driver端内存不足时,应用挂起不退出,日志内容如下。
16/04/19 15:56:22 ERROR Utils: Uncaught exception in thread task-result-getter-2 java.lang.OutOfMemoryError: Java heap space at java.lang.reflect.Array.newArray(Native Method) at java.lang.reflect.Array.newInstance(Array.java:75) at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1671) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1707) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:71) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:91) at org.apache.spark.scheduler.DirectTaskResult.value(TaskResult.scala:94) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:66) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:57) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:57) at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1716) at org.apache.spark.scheduler.TaskResultGetter$$anon$3.run(TaskResultGetter.scala:56) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Exception in thread "task-result-getter-2" java.lang.OutOfMemoryError: Java heap space at java.lang.reflect.Array.newArray(Native Method) at java.lang.reflect.Array.newInstance(Array.java:75) at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1671) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1707) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:71) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:91) at org.apache.spark.scheduler.DirectTaskResult.value(TaskResult.scala:94) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:66) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:57) at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:57) at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1716) at org.apache.spark.scheduler.TaskResultGetter$$anon$3.run(TaskResultGetter.scala:56) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)
回答
用户尝试收集大量数据到Driver端,如果Driver端的内存不足以存放这些数据,那么就会抛出OOM(OutOfMemory)的异常,然后Driver端一直在进行GC,尝试回收垃圾来存放返回的数据,导致应用长时间挂起。
解决措施:
如果用户需要在OOM场景下强制将应用退出,那么可以在启动Spark Core应用时,在客户端配置文件“$SPARK_HOME/conf/spark-defaults.conf”中的配置项“spark.driver.extraJavaOptions”中添加如下内容:
-XX:OnOutOfMemoryError='kill -9 %p'
父主题: Spark应用开发常见问题