- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
ModelArts用户指南(Standard)
- ModelArts Standard使用流程
- ModelArts Standard准备工作
- ModelArts Standard资源管理
- 使用自动学习实现零代码AI开发
- 使用Workflow实现低代码AI开发
- 使用Notebook进行AI开发调试
- 数据准备与处理
- 使用ModelArts Standard训练模型
- 使用ModelArts Standard部署模型并推理预测
- 制作自定义镜像用于ModelArts Standard
- ModelArts Standard资源监控
- 使用CTS审计ModelArts服务
- ModelArts用户指南(Studio)
- ModelArts用户指南(Lite Server)
- ModelArts用户指南(Lite Cluster)
- ModelArts用户指南(AI Gallery)
-
最佳实践
- ModelArts最佳实践案例列表
- 昇腾能力应用地图
-
LLM大语言模型训练推理
- 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类
- 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
-
AIGC模型训练推理
- FlUX.1基于DevServer适配PyTorch NPU推理指导(6.3.911)
- FLUX.1基于DevSever适配PyTorch NPUFintune&Lora训练指导(6.3.911)
- Llama 3.2-Vision基于DevServer适配Pytorch NPU训练微调指导(6.3.911)
- Paraformer基于DevServer适配PyTorch NPU推理指导(6.3.911)
- InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.910)
- LLaMA-VID基于DevServer适配PyTorch NPU推理指导(6.3.910)
- LLaVA-NeXT基于DevServer适配Pytorch NPU训练微调指导(6.3.910)
- MiniCPM-V2.0推理及LoRA微调基于DevServer适配PyTorch NPU指导(6.3.910)
- Qwen-VL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.910)
- SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.909)
- FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909)
- Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909)
- MiniCPM-V2.6基于DevServer适配PyTorch NPU训练指导(6.3.909)
- Qwen-VL基于DevServer适配Pytorch NPU的推理指导(6.3.909)
- SD WEBUI套件适配PyTorch NPU的推理指导(6.3.908)
- SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908)
- SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908)
- SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908)
- SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907)
- SDXL&SD1.5 ComfyUI基于Lite Cluster适配NPU推理指导(6.3.906)
- SDXL&SD1.5 WebUI基于Lite Cluster适配NPU推理指导(6.3.906)
- LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906)
- LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906)
- SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905)
- SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904)
- Open-Clip基于DevServer适配PyTorch NPU训练指导
- moondream2基于DevServer适配PyTorch NPU推理指导
- AIGC工具tailor使用指导
- 数字人模型训练推理
- 文生视频模型训练推理
- 内容审核模型训练推理
-
GPU业务迁移至昇腾训练推理
- ModelArts昇腾迁移调优工具总览
-
基于LLM模型的GPU训练业务迁移至昇腾指导
- 场景介绍
- 环境准备
- 迁移适配
- 精度对齐
- 性能调优
-
常见问题
- 报错提示RuntimeError: Default process group has not been initialized, please make sure to call init_process_group
- 训练运行报错AttributeError: 'torch_npu._C._NPUDeviceProperties' object has no attribute 'multi_processor_count'
- deepspeed多卡训练报错TypeError: deepspeed_init() got an unexpected keyword argument 'resume_from_checkpoint'
- Huggingface缓存目录空间不足,出现OSError: [Errno 122] Disk quota exceeded
- 调用transformers出现ImportError: Using the `Trainer` with `PyTorch` requires `accelerate`: Run `pip install --upgrade accelerate`
- 调用transformers出现ImportError: libcblas.so.3: cannot open shared object file: No such file or directory
- transformers调用cuda上的操作,或者执行卡死
- GPU训练业务迁移至昇腾的通用指导
- 基于AIGC模型的GPU推理业务迁移至昇腾指导
- GPU推理业务迁移至昇腾的通用指导
- 基于advisor的昇腾训练性能自助调优指导
- Dit模型Pytorch迁移与精度性能调优
- MA-Advisor自动诊断工具使用指导
- Standard权限管理
- Standard自动学习
- Standard开发环境
- Standard模型训练
- Standard推理部署
- 历史待下线案例
-
API参考
- 使用前必读
- API概览
- 如何调用API
-
Workflow工作流管理
- 获取Workflow工作流列表
- 新建Workflow工作流
- 删除Workflow工作流
- 查询Workflow工作流
- 修改Workflow工作流
- 总览Workflow工作流
- 查询Workflow待办事项
- 在线服务鉴权
- 创建在线服务包
- 获取Execution列表
- 新建Workflow Execution
- 删除Workflow Execution
- 查询Workflow Execution
- 更新Workflow Execution
- 管理Workflow Execution
- 管理Workflow StepExecution
- 获取Workflow工作流节点度量信息
- 新建消息订阅Subscription
- 删除消息订阅Subscription
- 查询消息订阅Subscription详情
- 更新消息订阅Subscription
- 创建工作流定时调度
- 查询工作流定时调度详情
- 删除工作流定时调度信息
- 更新工作流定时调度信息
-
开发环境管理
- 创建Notebook实例
- 查询Notebook实例列表
- 查询所有Notebook实例列表
- 查询Notebook实例详情
- 更新Notebook实例
- 删除Notebook实例
- 通过运行的实例保存成容器镜像
- 查询Notebook支持的有效规格列表
- 查询Notebook支持的可切换规格列表
- 查询运行中的Notebook可用时长
- Notebook时长续约
- 启动Notebook实例
- 停止Notebook实例
- 获取动态挂载OBS实例信息列表
- 动态挂载OBS
- 获取动态挂载OBS实例详情
- 动态卸载OBS
- 添加资源标签
- 删除资源标签
- 查询Notebook资源类型下的标签
- 查询支持的镜像列表
- 注册自定义镜像
- 查询用户镜像组列表
- 查询镜像详情
- 删除镜像
-
训练管理
- 创建算法
- 查询算法列表
- 查询算法详情
- 更新算法
- 删除算法
- 获取支持的超参搜索算法
- 创建训练实验
- 创建训练作业
- 查询训练作业详情
- 更新训练作业描述
- 删除训练作业
- 终止训练作业
- 查询训练作业指定任务的日志(预览)
- 查询训练作业指定任务的日志(OBS链接)
- 查询训练作业指定任务的运行指标
- 查询训练作业列表
- 查询超参搜索所有trial的结果
- 查询超参搜索某个trial的结果
- 获取超参敏感度分析结果
- 获取某个超参敏感度分析图像的路径
- 提前终止自动化搜索作业的某个trial
- 获取自动化搜索作业yaml模板的信息
- 获取自动化搜索作业yaml模板的内容
- 创建训练作业标签
- 删除训练作业标签
- 查询训练作业标签
- 获取训练作业事件列表
- 创建训练作业镜像保存任务
- 查询训练作业镜像保存任务
- 获取训练作业支持的公共规格
- 获取训练作业支持的AI预置框架
- AI应用管理
- APP认证管理
- 服务管理
- 资源管理
- DevServer管理
- 授权管理
- 工作空间管理
- 配额管理
- 资源标签管理
- 节点池管理
- 应用示例
- 权限策略和授权项
- 公共参数
-
历史API
-
数据管理(旧版)
- 查询数据集列表
- 创建数据集
- 查询数据集详情
- 更新数据集
- 删除数据集
- 查询数据集的统计信息
- 查询数据集监控数据
- 查询数据集的版本列表
- 创建数据集标注版本
- 查询数据集版本详情
- 删除数据集标注版本
- 查询样本列表
- 批量添加样本
- 批量删除样本
- 查询单个样本信息
- 获取样本搜索条件
- 分页查询团队标注任务下的样本列表
- 查询团队标注的样本信息
- 查询数据集标签列表
- 创建数据集标签
- 批量修改标签
- 批量删除标签
- 按标签名称更新单个标签
- 按标签名称删除标签及仅包含此标签的文件
- 批量更新样本标签
- 查询数据集的团队标注任务列表
- 创建团队标注任务
- 查询团队标注任务详情
- 启动团队标注任务
- 更新团队标注任务
- 删除团队标注任务
- 创建团队标注验收任务
- 查询团队标注验收任务报告
- 更新团队标注验收任务状态
- 查询团队标注任务统计信息
- 查询团队标注任务成员的进度信息
- 团队成员查询团队标注任务列表
- 提交验收任务的样本评审意见
- 团队标注审核
- 批量更新团队标注样本的标签
- 查询标注团队列表
- 创建标注团队
- 查询标注团队详情
- 更新标注团队
- 删除标注团队
- 向标注成员发送邮件
- 查询所有团队的标注成员列表
- 查询标注团队的成员列表
- 创建标注团队的成员
- 批量删除标注团队成员
- 查询标注团队成员详情
- 更新标注团队成员
- 删除标注团队成员
- 查询数据集导入任务列表
- 创建导入任务
- 查询数据集导入任务的详情
- 查询数据集导出任务列表
- 创建数据集导出任务
- 查询数据集导出任务的状态
- 同步数据集
- 查询数据集同步任务的状态
- 查询智能标注的样本列表
- 查询单个智能标注样本的信息
- 分页查询智能任务列表
- 启动智能任务
- 获取智能任务的信息
- 停止智能任务
- 查询处理任务列表
- 创建处理任务
- 查询数据处理的算法类别
- 查询处理任务详情
- 更新处理任务
- 删除处理任务
- 查询数据处理任务的版本列表
- 创建数据处理任务版本
- 查询数据处理任务的版本详情
- 删除数据处理任务的版本
- 查询数据处理任务版本的结果展示
- 停止数据处理任务的版本
- 开发环境(旧版)
- 训练管理(旧版)
-
数据管理(旧版)
- SDK参考
- 场景代码示例
-
故障排除
- 通用问题
- 自动学习
-
开发环境
- 环境配置故障
- 实例故障
- 代码运行故障
- JupyterLab插件故障
-
VS Code连接开发环境失败故障处理
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”如何解决?
- 报错“Connection permission denied (publickey)”如何解决
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
- VSCode远程连接时卡顿,或Python调试插件无法使用如何处理?
-
自定义镜像故障
- Notebook自定义镜像故障基础排查
- 镜像保存时报错“there are processes in 'D' status, please check process status using 'ps -aux' and kill all the 'D' status processes”或“Buildimge,False,Error response from daemon,Cannot pause container xxx”如何解决?
- 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决?
- 保存镜像时报错“too many layers in your image”如何解决?
- 镜像保存时报错“The container size (xG) is greater than the threshold (25G)”如何解决?
- 镜像保存时报错“BuildImage,True,Commit successfully|PushImage,False,Task is running.”
- 使用自定义镜像创建Notebook后打开没有kernel
- 用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决?
- 用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found)
- 用户使用torch报错Unexpected error from cudaGetDeviceCount
- 其他故障
-
训练作业
- OBS操作相关故障
-
云上迁移适配故障
- 无法导入模块
- 训练作业日志中提示“No module named .*”
- 如何安装第三方包,安装报错的处理方法
- 下载代码目录失败
- 训练作业日志中提示“No such file or directory”
- 训练过程中无法找到so文件
- ModelArts训练作业无法解析参数,日志报错
- 训练输出路径被其他作业使用
- PyTorch1.0引擎提示“RuntimeError: std:exception”
- MindSpore日志提示“ retCode=0x91, [the model stream execute failed]”
- 使用moxing适配OBS路径,pandas读取文件报错
- 日志提示“Please upgrade numpy to >= xxx to use this pandas version”
- 重装的包与镜像装CUDA版本不匹配
- 创建训练作业提示错误码ModelArts.2763
- 训练作业日志中提示 “AttributeError: module '***' has no attribute '***'”
- 系统容器异常退出
- 硬盘限制故障
- 外网访问限制
- 权限问题
- GPU相关问题
-
业务代码问题
- 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields”
- 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0”
- 训练作业失败,返回错误码139
- 训练作业失败,如何使用开发环境调试训练代码?
- 日志提示“ '(slice(0, 13184, None), slice(None, None, None))' is an invalid key”
- 日志报错“DataFrame.dtypes for data must be int, float or bool”
- 日志提示“CUDNN_STATUS_NOT_SUPPORTED. ”
- 日志提示“Out of bounds nanosecond timestamp”
- 日志提示“Unexpected keyword argument passed to optimizer”
- 日志提示“no socket interface found”
- 日志提示“Runtimeerror: Dataloader worker (pid 46212 ) is killed by signal: Killed BP”
- 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”
- 日志提示“No module name 'unidecode'”
- 分布式Tensorflow无法使用“tf.variable”
- MXNet创建kvstore时程序被阻塞,无报错
- 日志出现ECC错误,导致训练作业失败
- 超过最大递归深度导致训练作业失败
- 使用预置算法训练时,训练失败,报“bndbox”错误
- 训练作业进程异常退出
- 训练作业进程被kill
- 预置算法运行故障
- 训练作业运行失败
- 专属资源池创建训练作业
- 训练作业性能问题
- Ascend相关问题
-
推理部署
-
模型管理
- 创建模型失败,如何定位和处理问题?
- 导入模型提示该账号受限或者没有操作权限
- 用户创建模型时构建镜像或导入文件失败
- 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的?
- 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志
- 通过OBS创建模型时,构建日志中提示pip下载包失败
- 通过自定义镜像创建模型失败
- 导入模型后部署服务,提示磁盘不足
- 创建模型成功后,部署服务报错,如何排查代码问题
- 自定义镜像导入配置运行时依赖无效
- 通过API接口查询模型详情,model_name返回值出现乱码
- 导入模型提示模型或镜像大小超过限制
- 导入模型提示单个模型文件超过5G限制
- 订阅的模型一直处于等待同步状态
- 创建模型失败,提示模型镜像构建任务超时,没有构建日志
-
服务部署
- 自定义镜像模型部署为在线服务时出现异常
- 部署的在线服务状态为告警
- 服务启动失败
- 服务部署、启动、升级和修改时,拉取镜像失败如何处理?
- 服务部署、启动、升级和修改时,镜像不断重启如何处理?
- 服务部署、启动、升级和修改时,容器健康检查失败如何处理?
- 服务部署、启动、升级和修改时,资源不足如何处理?
- 模型使用CV2包部署在线服务报错
- 服务状态一直处于“部署中”
- 服务启动后,状态断断续续处于“告警中”
- 服务部署失败,报错No Module named XXX
- IEF节点边缘服务部署失败
- 批量服务输入/输出obs目录不存在或者权限不足
- 部署在线服务出现报错No CUDA runtime is found
- 使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错
- 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments
- 内存不足如何处理?
- 服务预测
-
模型管理
- MoXing
- API/SDK
- 资源池
-
Lite Server
- GPU裸金属服务器使用EulerOS内核误升级如何解决
- GPU A系列裸金属服务器无法获取显卡如何解决
- GPU裸金属服务器无法Ping通如何解决
- GPU A系列裸金属服务器RoCE带宽不足如何解决?
- GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML
- 训练速度突然下降以及执行nvidia-smi卡顿如何解决?
- GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error
- 使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed
- 华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案
- GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败
- 裸金属服务器Euler OS升级NetworkManager-config-server导致SSH链接故障解决方案
- Lite Cluster
-
常见问题
-
一般性问题
- 什么是ModelArts
- ModelArts与其他服务的关系
- ModelArts与DLS服务的区别?
- 如何购买或开通ModelArts?
- 支持哪些型号的Ascend芯片?
- 如何获取访问密钥?
- 如何上传数据至OBS?
- 提示“上传的AK/SK不可用”,如何解决?
- 使用ModelArts时提示“权限不足”,如何解决?
- 如何用ModelArts训练基于结构化数据的模型?
- 什么是区域、可用区?
- 在ModelArts中如何查看OBS目录下的所有文件?
- ModelArts数据集保存到容器的哪里?
- ModelArts支持哪些AI框架?
- ModelArts训练和推理分别对应哪些功能?
- 如何查看账号ID和IAM用户ID
- ModelArts AI识别可以单独针对一个标签识别吗?
- ModelArts如何通过标签实现资源分组管理
- 为什么资源充足还是在排队?
- 规格中数字分别代表什么含义?
- 如何删除预置镜像中不需要的工具
- 计费相关
- Standard自动学习
-
Standard数据管理
- 添加图片时,图片大小有限制吗?
- 数据集图片无法显示,如何解决?
- 如何将多个物体检测的数据集合并成一个数据集?
- 导入数据集失败
- 表格类型的数据集如何标注
- 本地标注的数据,导入ModelArts需要做什么?
- 为什么通过Manifest文件导入失败?
- 标注结果存储在哪里?
- 如何将标注结果下载至本地?
- 团队标注时,为什么团队成员收不到邮件?
- 可以两个账号同时进行一个数据集的标注吗?
- 团队标注的数据分配机制是什么?
- 标注过程中,已经分配标注任务后,能否将一个labeler从标注任务中删除?删除后对标注结果有什么影响?如果不能删除labeler,能否删除将他的标注结果从整体标注结果中分离出来?
- 数据标注中,难例集如何定义?什么情况下会被识别为难例?
- 物体检测标注时,支持叠加框吗?
- 如何将两个数据集合并?
- 智能标注是否支持多边形标注?
- 团队标注的完成验收的各选项表示什么意思?
- 同一个账户,图片展示角度不同是为什么?
- 智能标注完成后新加入数据是否需要重新训练?
- 为什么在ModelArts数据标注平台标注数据提示标注保存失败?
- 标注多个标签,是否可针对一个标签进行识别?
- 使用数据处理的数据扩增功能后,新增图片没有自动标注
- 视频数据集无法显示和播放视频
- 使用样例的有标签的数据或者自己通过其他方式打好标签的数据放到OBS桶里,在modelarts中同步数据源以后看不到已标注,全部显示为未标注
- 如何使用soft NMS方法降低目标框堆叠度
- ModelArts标注数据丢失,看不到标注过的图片的标签
- 如何将某些图片划分到验证集或者训练集?
- 物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等?
- ModelArts数据管理支持哪些格式?
- 旧版数据集中的数据是否会被清理?
- 数据集版本管理找不到新建的版本
- 如何查看数据集大小
- 如何查看新版数据集的标注详情
- 标注数据如何导出
- 找不到新创建的数据集
- 数据集配额不正确
- 数据集如何切分
- 如何删除数据集图片
- 从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0
-
Standard Notebook
- 规格限制
- 文件上传下载
- 数据存储
- 环境配置相关
- Notebook实例常见错误
- 代码运行常见错误
- CodeLab
-
PyCharm Toolkit使用
- 安装ToolKit工具时出现错误,如何处理?
- PyCharm ToolKit工具中Edit Credential时,出现错误
- 为什么无法启动训练?
- 提交训练作业时,出现xxx isn't existed in train_version错误
- 提交训练作业报错“Invalid OBS path”
- 使用PyCharm Toolkit提交训练作业报错NoSuchKey
- 部署上线时,出现错误
- 如何查看PyCharm ToolKit的错误日志
- 如何通过PyCharm ToolKit创建多个作业同时训练?
- 使用PyCharm ToolKit ,提示Error occurs when accessing to OBS
- VS Code使用技巧
-
VS Code连接开发环境失败常见问题
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"ModelArts Remote Connect: Connecting to instance xxx..."超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”或“Connection permission denied (publickey)”如何解决?
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exitng now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 在Notebook中使用自定义镜像常见问题
-
更多功能咨询
- 在Notebook中,如何使用昇腾多卡进行调试?
- 使用Notebook不同的资源规格,为什么训练速度差不多?
- 使用MoXing时,如何进行增量训练?
- 在Notebook中如何查看GPU使用情况
- 如何在代码中打印GPU使用信息
- Ascend上如何查看实时性能指标?
- 不启用自动停止,系统会自动停掉Notebook实例吗?会删除Notebook实例吗?
- JupyterLab目录的文件、Terminal的文件和OBS的文件之间的关系
- ModelArts中创建的数据集,如何在Notebook中使用
- pip介绍及常用命令
- 开发环境中不同Notebook规格资源“/cache”目录的大小
- 开发环境如何实现IAM用户隔离?
- 资源超分对Notebook实例有什么影响?
- 在Notebook中使用tensorboard命令打开日志文件报错Permission denied
-
Standard训练作业
-
功能咨询
- 是否支持图像分割任务的训练?
- 本地导入的算法有哪些格式要求?
- 欠拟合的解决方法有哪些?
- 旧版训练迁移至新版训练需要注意哪些问题?
- ModelArts训练好后的模型如何获取?
- AI引擎Scikit_Learn0.18.1的运行环境怎么设置?
- TPE算法优化的超参数必须是分类特征(categorical features)吗
- 模型可视化作业中各参数的意义?
- 如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练?
- 如何查询自定义镜像的cuda和cudnn版本?
- Moxing安装文件如何获取?
- 如何使用soft NMS方法降低目标框堆叠度
- 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?
- 训练作业的自定义镜像如何安装Moxing?
- 子用户使用专属资源池创建训练作业无法选择已有的SFS Turbo
- 训练过程读取数据
- 编写训练代码
- 创建训练作业
- 管理训练作业版本
- 查看作业详情
-
功能咨询
- Standard推理部署
- Standard资源池
- Lite Server
- Lite Cluster
- AI Gallery
- API/SDK
-
一般性问题
- 视频帮助
- 文档下载
- 通用参考
本文导读
展开导读
文档首页/
AI开发平台ModelArts/
最佳实践/
LLM大语言模型训练推理/
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)/
推理模型量化/
使用SmoothQuant量化
链接复制成功!
使用SmoothQuant量化
SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。
本章节介绍如何使用SmoothQuant量化工具实现推理量化。
SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
代码目录如下:
AutoSmoothQuant #量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ...
具体操作如下:
- 参考Step1 环境准备创建pod准备量化环境。
- 执行如下命令进入容器,并进入AutoSmoothQuant目录下
kubectl exec -it {pod_name} bash cd /home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/AutoSmoothQuant/autosmoothquant/examples
- 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。
export ASCEND_RT_VISIBLE_DEVICES=0,1
说明:通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export ASCEND_RT_VISIBLE_DEVICES=0,1”,注意编号不是填4、5。图1 查询结果
- 执行权重转换。
cd autosmoothquant/examples/ python smoothquant_model.py --model-path /home/ma-user/llama-2-7b/ --quantize-model --generate-scale --dataset-path /data/nfs/user/val.jsonl --scale-output scales/llama2-7b.pt --model-output quantized_model/llama2-7b --per-token --per-channel
参数说明:
- --model-path:原始模型权重路径。
- --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数
- --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
- --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。
- --scale-output:量化系数保存路径。
- --scale-input:量化系数输入路径,如果之前已生成过量化系数,则可指定该参数,跳过生成scale的过程。
- --model-output:量化模型权重保存路径。
- --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。
- --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
- --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。
- 启动smoothQuant量化服务。
参考部署推理服务,使用量化后权重部署AWQ量化服务。
注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。
-q smoothquant 或者 --quantization smoothquant --dtype=float16
父主题: 推理模型量化