准备代码
本教程中用到的训练推理代码和如下表所示,请提前准备好。
获取模型软件包和权重文件
本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。
代码包名称 |
代码说明 |
下载地址 |
---|---|---|
AscendCloud-6.3.907-xxx.zip
说明:
软件包名称中的xxx表示时间戳。 |
包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 |
获取路径:Support-E
说明:
如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 |
序号 |
支持模型 |
支持模型参数量 |
权重文件获取地址 |
---|---|---|---|
1 |
llama2 |
llama2-7b |
|
2 |
llama2-13b |
||
3 |
llama2-70b |
||
4 |
llama3 |
llama3-8b |
|
5 |
llama3-70b |
||
6 |
Qwen |
qwen-7b |
|
7 |
qwen-14b |
||
8 |
qwen-72b |
||
9 |
Qwen1.5 |
qwen1.5-7b |
|
10 |
qwen1.5-14b |
||
11 |
qwen1.5-32b |
||
12 |
qwen1.5-72b |
||
13 |
Yi |
yi-6b |
|
14 |
yi-34b |
||
15 |
ChatGLMv3 |
glm3-6b |
|
16 |
Baichuan2 |
baichuan2-13b |
|
17 |
Qwen2 |
qwen2-0.5b |
|
18 |
qwen2-1.5b |
||
19 |
qwen2-7b |
||
20 |
qwen2-72b |
||
21 |
GLMv4 |
glm4-9b |
模型软件包结构说明
|——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
工作目录介绍
${workdir}(例如/home/ma-user/ws ) |──llm_train #解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。 # 自动生成数据目录结构 |── processed_for_input #目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件
上传代码和权重文件到工作环境
- 使用root用户以SSH的方式登录DevServer。
- 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。
unzip AscendCloud-*.zip
- 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。
进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。
cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B
注意:多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。