网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

增量模型训练

更新时间:2024-12-10 GMT+08:00
分享

什么是增量训练

增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。

增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。

增量训练特别适用于以下情况:

  • 数据流更新:在实际应用中,数据可能会持续更新,增量训练允许模型适应新的数据而不必重新训练。
  • 资源限制:如果重新训练一个大型模型成本过高,增量训练可以是一个更经济的选择。
  • 避免灾难性遗忘:在传统训练中,新数据可能会覆盖旧数据的知识,导致模型忘记之前学到的内容。增量训练通过保留旧知识的同时学习新知识来避免这个问题。

增量训练在很多领域都有应用,比如自然语言处理、计算机视觉和推荐系统等。它使得AI系统能够更加灵活和适应性强,更好地应对现实世界中不断变化的数据环境。

ModelArts Standard中如何实现增量训练

增量训练是通过Checkpoint机制实现。

Checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。当需要增加新的数据继续训练时,只需要加载Checkpoint,并用Checkpoint信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。

在ModelArts训练中实现增量训练,建议使用“训练输出”功能。

在创建训练作业时,设置训练“输出”参数为“train_url”,在指定的训练输出的数据存储位置中保存Checkpoint,“预下载至本地目录”选择“下载”。选择预下载至本地目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。

图1 训练输出设置

PyTorch版reload ckpt

  1. PyTorch模型保存有两种方式。
    • 仅保存模型参数
      state_dict = model.state_dict()
      torch.save(state_dict, path)
    • 保存整个Model(不推荐)
      torch.save(model, path)
  2. 可根据step步数、时间等周期性保存模型的训练过程的产物。

    将模型训练过程中的网络权重、优化器权重、以及epoch进行保存,便于中断后继续训练恢复。

       checkpoint = {
               "net": model.state_dict(),
               "optimizer": optimizer.state_dict(),
               "epoch": epoch   
       }
       if not os.path.isdir('model_save_dir'):
           os.makedirs('model_save_dir')
       torch.save(checkpoint,'model_save_dir/ckpt_{}.pth'.format(str(epoch)))
  3. 完整代码示例。
    import os
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_url", type=str)
    args, unparsed = parser.parse_known_args()
    args = parser.parse_known_args()
    # train_url 将被赋值为"/home/ma-user/modelarts/outputs/train_url_0" 
    train_url = args.train_url
    
    # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。
    if os.listdir(train_url):
        print('> load last ckpt and continue training!!')
        last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".pth")])[-1]
        local_ckpt_file = os.path.join(train_url, last_ckpt)
        print('last_ckpt:', last_ckpt)
        # 加载断点
        checkpoint = torch.load(local_ckpt_file)  
        # 加载模型可学习参数
        model.load_state_dict(checkpoint['net'])  
        # 加载优化器参数
        optimizer.load_state_dict(checkpoint['optimizer'])  
        # 获取保存的epoch,模型会在此epoch的基础上继续训练
        start_epoch = checkpoint['epoch']  
    start = datetime.now()
    total_step = len(train_loader)
    for epoch in range(start_epoch + 1, args.epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.cuda(non_blocking=True)
            labels = labels.cuda(non_blocking=True)
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            ...
    
        # 保存模型训练过程中的网络权重、优化器权重、以及epoch
        checkpoint = {
              "net": model.state_dict(),
              "optimizer": optimizer.state_dict(),
              "epoch": epoch
            }
        if not os.path.isdir(train_url):
            os.makedirs(train_url)
            torch.save(checkpoint, os.path.join(train_url, 'ckpt_best_{}.pth'.format(epoch)))

MindSpore版reload ckpt

import os
import argparse
from resnet import resnet50
from mindspore.nn.optim.momentum import Momentum 
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore import load_checkpoint, load_param_into_net
from mindspore.train import Model, CheckpointConfig, ModelCheckpoint
from mindspore.train.callback import LossMonitor

parser = argparse.ArgumentParser()
parser.add_argument("--train_url", type=str)
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.") 
parser.add_argument("--num_classes", type=int, default=10, help="Num classes.") 
parser.add_argument("--do_train", type=bool, default=True, help="Do train or not.") 
args_opt, unparsed = parser.parse_known_args()
# train_url 将被赋值为"/home/ma-user/modelarts/outputs/train_url_0" 。
train_url = args_opt.train_url

# 初始定义的网络、损失函数及优化器,详细请参见MindSpore保存与加载。
# 1.初始定义的网络,以“ResNet50”为例。详细请参见ResNet50。
net = resnet50(args_opt.batch_size, args_opt.num_classes)
# 2.定义损失函数,详细请参见MindSpore自定义损失函数。
ls = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
# 3.定义优化器,详细请参见MindSpore自定义优化器。
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
# 首次训练的epoch初始值,mindspore1.3及以后版本会支持定义epoch_size初始值。
# cur_epoch_num = 0
# 判断输出obs路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。
if os.listdir(train_url):
    last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".ckpt")])[-1]
    print('last_ckpt:', last_ckpt)
    last_ckpt_file = os.path.join(train_url, last_ckpt)
     # 加载断点,详细请参见mindspore.load_checkpoint。
    param_dict = load_checkpoint(last_ckpt_file) 
    print('> load last ckpt and continue training!!')
    # 加载模型参数到net。
    load_param_into_net(net, param_dict)
    # 加载模型参数到opt。
    load_param_into_net(opt, param_dict)

    # 获取保存的epoch值,模型会在此epoch的基础上继续训练,此参数在mindspore1.3及以后版本会支持。
    # if param_dict.get("epoch_num"):
    #     cur_epoch_num = int(param_dict["epoch_num"].data.asnumpy())
model = Model(net, loss_fn=ls, optimizer=opt, metrics={'acc'})
# as for train, users could use model.train
if args_opt.do_train:
    dataset = create_dataset()
    batch_num = dataset.get_dataset_size()
    config_ck = CheckpointConfig(save_checkpoint_steps=batch_num,
                                     keep_checkpoint_max=35)
    # append_info=[{"epoch_num": cur_epoch_num}],mindspore1.3及以后版本会支持append_info参数,保存当前时刻的epoch值。
    # 保存网络参数,详细请参见mindspore.train.ModelCheckpoint。
    ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
                                     directory=args_opt.train_url,
                                     config=config_ck)
    loss_cb = LossMonitor()
    model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
    # model.train(epoch_size-cur_epoch_num, dataset, callbacks=[ckpoint_cb, loss_cb]),mindspore1.3及以后版本支持从断点恢复训练。
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容