网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

预置框架启动文件的启动流程说明

更新时间:2024-12-16 GMT+08:00
分享

ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。

本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。

Ascend-Powered-Engine框架启动原理

在ModelArts创建训练作业界面选择AI框架时,有一个AI框架是“Ascend-Powered-Engine”,它既不是一个AI框架(如:PyTorch、TensorFlow)也不是一个并行执行框架(如:MPI),而是适配加速芯片Ascend的一组AI框架+运行环境+启动方式的集合。

由于主流的Snt9系列Ascend加速卡都跑在ARM CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推出的统一计算架构)计算库,Ascend-Powered-Engine引擎的镜像中安装了与Ascend驱动适配的CANN(华为针对AI场景推出的异构计算架构)计算库。

提交训练作业后,ModelArts Standard平台会自动运行训练作业的启动文件。

Ascend-Powered-Engine框架的启动文件的默认启动方式如下:

每个训练作业的启动文件的运行次数取决于任务卡数,即在训练作业运行时,有N个任务卡数训练作业内就会运行N次启动文件。例如,单机1卡,则worker-0任务的启动文件会被运行1次;单机8卡,则worker-0任务的启动文件会被运行8次。因此需要避免在启动文件中进行端口监听。

启动文件会被自动设置如下环境变量:

  • RANK_TABLE_FILE:rank table file(RTF)文件路径。
  • ASCEND_DEVICE_ID:逻辑device_id,例如单卡训练,该值始终为 0。
  • RANK_ID:可以理解为训练作业级的device逻辑(顺序)编号。
  • RANK_SIZE:根据RTF中device的数目设置该值,例如“4 * snt9b”,则该值即为4。

当需要启动文件仍然在逻辑上仅运行1次时,则可以在启动文件中判断“ASCEND_DEVICE_ID”的值,当值为“0”则执行逻辑,当值为非0则直接退出。

Ascend-Powered-Engine框架对应的代码示例“mindspore-verification.py”,请参见训练mindspore-verification.py文件

Ascend-Powered-Engine框架单机启动命令和分布式启动命令无区别。

Ascend-Powered-Engine框架支持多种启动方式来启动“启动文件”,默认是基于“RANK_TABLE_FILE”启动,也可以通过配置“MA_RUN_METHOD”环境变量使用其他方式来启动。MA_RUN_METHOD环境变量支持torchrun和msrun。

  • “MA_RUN_METHOD=torchrun”时,表示ModelArts Standard平台使用torchrun命令启动训练作业的“启动文件”。
    说明:

    要求PyTorch版本大于等于1.11.0。

    • 单机时,ModelArts Standard平台使用如下命令启动训练作业的“启动文件”。
      torchrun --standalone --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} ${MA_EXTRA_TORCHRUN_PARAMS} "启动文件" {arg1} {arg2} ...
    • 多机时,ModelArts Standard平台使用如下命令启动训练作业的“启动文件”。
      torchrun --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} --node_rank=${VC_TASK_INDEX} --master_addr={master_addr} --master_port=${MA_TORCHRUN_MASTER_PORT} --rdzv_id={ma_job_name} --rdzv_backend=static ${MA_EXTRA_TORCHRUN_PARAMS} "启动文件" {arg1} {arg2} ...

    参数说明如下:

    • standalone:标识为单任务实例作业。
    • nnodes:任务实例个数。
    • nproc_per_node:每个任务实例启动的主进程数,设置为任务分配的NPU数相同。
    • node_rank:任务rank,用于多任务分布式训练。
    • master_addr:主任务(rank 0)的地址,设置为任务worker-0的通信域名。
    • master_port:在主任务(rank 0)上,用于分布式训练期间通信的端口。默认设置为18888端口。当遇到master_port冲突问题时,可通过设置MA_TORCHRUN_MASTER_PORT环境变量值修改端口配置。
    • rdzv_id:Rendezvous标识,设置为带有训练作业ID的值。
    • rdzv_backend:Rendezvous后端,固定设置为static,即不使用Rendezvous,而是使用master_addr和master_port配置。另外,可通过设置MA_EXTRA_TORCHRUN_PARAMS环境变量值,以增加额外的torchrun命令参数,或是覆盖预设的torchrun命令参数。例如配置torchrun命令中rdzv_conf参数的训练作业API环境变量的部分示例如下:
      "environments": {
      "MA_RUN_METHOD": "torchrun",
      "MA_EXTRA_TORCHRUN_PARAMS": "--rdzv_conf=timeout=7200"
      }
    说明:

    如果在torchrun初始化分布式一致性协商阶段出现“RuntimeError:Socket Timeout”错误时,可以通过增加如下环境变量再次创建训练作业以查看torchrun初始化阶段的详细信息,进一步排查问题。

    • LOGLEVEL=INFO
    • TORCH_CPP_LOG_LEVEL=INFO
    • TORCH_DISTRIBUTED_DEBUG=DETAIL

    出现“RuntimeError: Socket Timeout”错误,一般是因为不同任务执行torchrun命令的时机差距过大导致的。torchrun命令执行时机差距过大,大多是因为在torchrun命令被执行之前任务还有一些初始化动作,例如下载训练数据集、CKPT等。这些初始化动作执行耗时差距过大会直接导致出现Socket Timeout错误。所以遇到Socket Timeout问题时首先需要排查的是各个任务执行torchrun的时间点差距是否在合理范围内,如果时间点差距过大,需要优化执行torchrun命令之前的初始化动作,使其时间点差距在合理范围内。

  • “MA_RUN_METHOD=msrun”时,表示ModelArts Standard平台使用msrun命令启动训练作业的“启动文件”。
    说明:

    要求MindSpore版本大于等于2.3.0。

    该方案支持动态组网和基于rank table file文件组网两种方式。当配置了环境变量MS_RANKTABLE_ENABLE="True",则msrun会读取rank table file文件内容进行组网。否则默认使用动态组网。

    msrun使用如下命令启动训练作业的“启动文件”。

    msrun --worker_num=${msrun_worker_num} --local_worker_num=${MA_NUM_GPUS} --master_addr=${msrun_master_addr} --node_rank=${VC_TASK_INDEX} --master_port=${msrun_master_port} --log_dir=${msrun_log_dir} --join=True --cluster_time_out=${MSRUN_CLUSTER_TIME_OUT} --rank_table_file=${msrun_rank_table_file} "启动文件" {arg1} {arg2} ...

    参数说明如下:

    • worker_num:所有进程个数。因为一个卡起一个进程,所以也表示使用总卡数。
    • local_worker_num:当前节点进程个数,即当前节点使用的卡数。
    • master_addr:msrun组网调度进程所在节点的IP地址,单机场景无需配置。
    • master_port:msrun组网调度进程的端口。
    • node_rank:当前节点的编号。
    • log_dir:msrun组网和各个进程的日志输出地址。
    • join:训练进程拉起后,msrun进程是否仍存在,默认配置为“True”,等待所有进程退出后再退出。
    • cluster_time_out:集群组网超时时间,默认是“600s”,可通过环境变量“MSRUN_CLUSTER_TIME_OUT”控制。
    • rank_table_file:rank table file文件地址,如果配置了环境变量“MS_RANKTABLE_ENABLE="True"”,启动时会增加该参数。

PyTorch-GPU框架启动原理

单机多卡场景下平台会为启动文件额外拼接 --init_method "tcp://<ip>:<port>" 参数。

多机多卡场景下平台会为启动文件额外拼接 --init_method "tcp://<ip>:<port>" --rank <rank_id> --world_size <node_num>参数。

启动文件需要解析上述参数。

PyTorch-GPU框架的代码示例,请参见示例:创建DDP分布式训练(PyTorch+GPU)中的方式一

TensorFlow-GPU框架启动原理

单机场景下(即选择的实例数为1),ModelArts只会在一个节点上启动一个训练容器,该训练容器独享节点规格的可使用资源。

多机场景下(即选择的实例数大于1),ModelArts会优先在相同节点上启动一个parameter server(以下简称ps)和一个worker,平台会自动一比一分配ps与worker任务。例如,双机场景会分配2个ps和2个worker任务,并为启动文件额外注入如下参数。

--task_index <VC_TASK_INDEX> --ps_hosts <TF_PS_HOSTS> --worker_hosts <TF_WORKER_HOSTS> --job_name <MA_TASK_NAME> 

启动文件需要解析如下参数。

  • VC_TASK_INDEX:task序号,如0、1、2。
  • TF_PS_HOSTS :ps节点地址数组,如“[xx-ps-0.xx:TCP_PORT,xx-ps-1.xx:TCP_PORT]”,TCP_PORT是一个在5000~10000的随机端口。
  • TF_WORKER_HOSTS:worker节点地址数组,如“[xx-worker-0.xx:TCP_PORT,xx-worker-1.xx:TCP_PORT]”,TCP_PORT是一个在5000~10000的随机端口。
  • MA_TASK_NAME:任务名称,取值是ps或worker。

具体示例请参见:TensorFlow-GPU框架的代码示例mnist.py(单机)

Horovod/MPI/MindSpore-GPU

使用Horovod/MPI/MindSpore-GPU预置框架来运行的启动文件,平台自动以mpirun命令启动之。使用ModelArts Standard训练相应预置引擎,用户仅需关注启动文件(即训练脚本)的编写;mpirun命令和训练作业集群的构建都由平台自动完成。平台不会为启动文件额外拼接参数。

“pytorch_synthetic_benchmark.py”文件示例如下:

import argparse
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import models
import horovod.torch as hvd
import timeit
import numpy as np

# Benchmark settings
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark',
                                 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
                    help='use fp16 compression during allreduce')

parser.add_argument('--model', type=str, default='resnet50',
                    help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
                    help='input batch size')

parser.add_argument('--num-warmup-batches', type=int, default=10,
                    help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
                    help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
                    help='number of benchmark iterations')

parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')

parser.add_argument('--use-adasum', action='store_true', default=False,
                    help='use adasum algorithm to do reduction')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

hvd.init()

if args.cuda:
    # Horovod: pin GPU to local rank.
    torch.cuda.set_device(hvd.local_rank())

cudnn.benchmark = True

# Set up standard model.
model = getattr(models, args.model)()

# By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1

if args.cuda:
    # Move model to GPU.
    model.cuda()
    # If using GPU Adasum allreduce, scale learning rate by local_size.
    if args.use_adasum and hvd.nccl_built():
        lr_scaler = hvd.local_size()

optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler)

# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
                                     named_parameters=model.named_parameters(),
                                     compression=compression,
                                     op=hvd.Adasum if args.use_adasum else hvd.Average)

# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

# Set up fixed fake data
data = torch.randn(args.batch_size, 3, 224, 224)
target = torch.LongTensor(args.batch_size).random_() % 1000
if args.cuda:
    data, target = data.cuda(), target.cuda()


def benchmark_step():
    optimizer.zero_grad()
    output = model(data)
    loss = F.cross_entropy(output, target)
    loss.backward()
    optimizer.step()


def log(s, nl=True):
    if hvd.rank() != 0:
        return
    print(s, end='\n' if nl else '')


log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))

# Warm-up
log('Running warmup...')
timeit.timeit(benchmark_step, number=args.num_warmup_batches)

# Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
    time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter)
    img_sec = args.batch_size * args.num_batches_per_iter / time
    log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
    img_secs.append(img_sec)

# Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
    (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))

run_mpi.sh文件内容如下:

#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [ -z ${MY_MPI_SLOTS} ]; then
    echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
    MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: ${MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > ${MY_MPI_TUNE_FILE}
# add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

# start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

# confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [ $MY_TASK_INDEX -eq 0 ]; then
    # generate the hostfile of mpi
    for ((i=0; i<$MA_NUM_HOSTS; i++))
    do
        eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
        echo "[run_mpi] hostname: ${hostname}"

        ip=""
        while [ -z "$ip" ]; do
            ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
            sleep 1
        done
        echo "[run_mpi] resolved ip: ${ip}"

        # test the sshd is up
        while :
        do
            if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then
                break
            fi
            sleep 1
        done

        echo "[run_mpi] the sshd of ip ${ip} is up"

        echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
    done

    printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [ $MY_TASK_INDEX -eq 0 ]; then

    echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

    np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} ))

    echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

    # execute mpirun at worker-0
    # mpirun
    mpirun \
        -np ${np} \
        -hostfile ${MY_HOME}/hostfile \
        -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
        -tune ${MY_MPI_TUNE_FILE} \
        -bind-to none -map-by slot \
        -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x NCCL_SOCKET_FAMILY=AF_INET \
        -x HOROVOD_MPI_THREADS_DISABLE=1 \
        -x LD_LIBRARY_PATH \
        -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
        "$@"

    RET_CODE=$?

    if [ $RET_CODE -ne 0 ]; then
        echo "[run_mpi] exec command failed, exited with $RET_CODE"
    else
        echo "[run_mpi] exec command successfully, exited with $RET_CODE"
    fi

    # stop 1...N worker by killing the sleep proc
    sed -i '1d' ${MY_HOME}/hostfile
    if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then
        echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

        sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
        printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

        mpirun \
        --hostfile ${MY_HOME}/hostfile \
        --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
        --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
        -x PATH -x LD_LIBRARY_PATH \
        pkill sleep \
        > /dev/null 2>&1
    fi

    echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
    echo "[run_mpi] the training log is in worker-0"
    sleep 365d
    echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容