- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
ModelArts用户指南(Standard)
- ModelArts Standard使用流程
- ModelArts Standard准备工作
- ModelArts Standard资源管理
- 使用自动学习实现零代码AI开发
- 使用Workflow实现低代码AI开发
- 使用Notebook进行AI开发调试
- 数据准备与处理
- 使用ModelArts Standard训练模型
- 使用ModelArts Standard部署模型并推理预测
- 制作自定义镜像用于ModelArts Standard
- ModelArts Standard资源监控
- 使用CTS审计ModelArts服务
- ModelArts用户指南(Studio)
- ModelArts用户指南(Lite Server)
- ModelArts用户指南(Lite Cluster)
- ModelArts用户指南(AI Gallery)
-
最佳实践
- ModelArts最佳实践案例列表
- 昇腾能力应用地图
- DeepSeek系列模型推理
-
LLM大语言模型训练推理
- 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类
- 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
-
MLLM多模态模型训练推理
- Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909)
- MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912)
- MiniCPM-V2.0推理及LoRA微调基于Lite Server适配PyTorch NPU指导(6.3.910)
- InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912)
- LLaVA-NeXT基于Lite Server适配PyTorch NPU训练微调指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU预训练指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912)
- LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- moondream2基于Lite Server适配PyTorch NPU推理指导
-
文生图模型训练推理
- FlUX.1基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911)
- Hunyuan-DiT基于Lite Server部署适配PyTorch NPU推理指导(6.3.909)
- SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912)
- SD3基于Lite Server适配PyTorch NPU的训练指导(6.3.912)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- SD1.5&SDXL Diffusers框架基于Lite Server适配PyTorch NPU训练指导(6.3.908)
- SD1.5&SDXL Kohya框架基于DevServer适配PyTorch NPU训练指导(6.3.908)
- SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- SDXL&SD1.5 ComfyUI基于Lite Cluster适配NPU推理指导(6.3.906)
- SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的LoRA训练指导(6.3.905)
- SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904)
- Open-Clip基于Lite Server适配PyTorch NPU训练指导
- AIGC工具tailor使用指导
- 文生视频模型训练推理
- 数字人模型训练推理
- 内容审核模型训练推理
- GPU业务迁移至昇腾训练推理
- Standard权限管理
- Standard自动学习
- Standard开发环境
- Standard模型训练
- Standard推理部署
- 历史待下线案例
-
API参考
- 使用前必读
- API概览
- 如何调用API
-
Workflow工作流管理
- 获取Workflow工作流列表
- 新建Workflow工作流
- 删除Workflow工作流
- 查询Workflow工作流
- 修改Workflow工作流
- 总览Workflow工作流
- 查询Workflow待办事项
- 在线服务鉴权
- 创建在线服务包
- 获取Execution列表
- 新建Workflow Execution
- 删除Workflow Execution
- 查询Workflow Execution
- 更新Workflow Execution
- 管理Workflow Execution
- 管理Workflow StepExecution
- 获取Workflow工作流节点度量信息
- 新建消息订阅Subscription
- 删除消息订阅Subscription
- 查询消息订阅Subscription详情
- 更新消息订阅Subscription
- 创建工作流定时调度
- 查询工作流定时调度详情
- 删除工作流定时调度信息
- 更新工作流定时调度信息
-
开发环境管理
- 创建Notebook实例
- 查询Notebook实例列表
- 查询所有Notebook实例列表
- 查询Notebook实例详情
- 更新Notebook实例
- 删除Notebook实例
- 通过运行的实例保存成容器镜像
- 查询Notebook支持的有效规格列表
- 查询Notebook支持的可切换规格列表
- 查询运行中的Notebook可用时长
- Notebook时长续约
- 启动Notebook实例
- 停止Notebook实例
- 获取动态挂载OBS实例信息列表
- 动态挂载OBS
- 获取动态挂载OBS实例详情
- 动态卸载OBS
- 添加资源标签
- 删除资源标签
- 查询Notebook资源类型下的标签
- 查询支持的镜像列表
- 注册自定义镜像
- 查询用户镜像组列表
- 查询镜像详情
- 删除镜像
-
训练管理
- 创建算法
- 查询算法列表
- 查询算法详情
- 更新算法
- 删除算法
- 获取支持的超参搜索算法
- 创建训练实验
- 创建训练作业
- 查询训练作业详情
- 更新训练作业描述
- 删除训练作业
- 终止训练作业
- 查询训练作业指定任务的日志(预览)
- 查询训练作业指定任务的日志(OBS链接)
- 查询训练作业指定任务的运行指标
- 查询训练作业列表
- 查询超参搜索所有trial的结果
- 查询超参搜索某个trial的结果
- 获取超参敏感度分析结果
- 获取某个超参敏感度分析图像的路径
- 提前终止自动化搜索作业的某个trial
- 获取自动化搜索作业yaml模板的信息
- 获取自动化搜索作业yaml模板的内容
- 创建训练作业标签
- 删除训练作业标签
- 查询训练作业标签
- 获取训练作业事件列表
- 创建训练作业镜像保存任务
- 查询训练作业镜像保存任务
- 获取训练作业支持的公共规格
- 获取训练作业支持的AI预置框架
- AI应用管理
- APP认证管理
- 服务管理
- 资源管理
- DevServer管理
- 授权管理
- 工作空间管理
- 配额管理
- 资源标签管理
- 节点池管理
- 应用示例
- 权限策略和授权项
- 公共参数
-
历史API
-
数据管理(旧版)
- 查询数据集列表
- 创建数据集
- 查询数据集详情
- 更新数据集
- 删除数据集
- 查询数据集的统计信息
- 查询数据集监控数据
- 查询数据集的版本列表
- 创建数据集标注版本
- 查询数据集版本详情
- 删除数据集标注版本
- 查询样本列表
- 批量添加样本
- 批量删除样本
- 查询单个样本信息
- 获取样本搜索条件
- 分页查询团队标注任务下的样本列表
- 查询团队标注的样本信息
- 查询数据集标签列表
- 创建数据集标签
- 批量修改标签
- 批量删除标签
- 按标签名称更新单个标签
- 按标签名称删除标签及仅包含此标签的文件
- 批量更新样本标签
- 查询数据集的团队标注任务列表
- 创建团队标注任务
- 查询团队标注任务详情
- 启动团队标注任务
- 更新团队标注任务
- 删除团队标注任务
- 创建团队标注验收任务
- 查询团队标注验收任务报告
- 更新团队标注验收任务状态
- 查询团队标注任务统计信息
- 查询团队标注任务成员的进度信息
- 团队成员查询团队标注任务列表
- 提交验收任务的样本评审意见
- 团队标注审核
- 批量更新团队标注样本的标签
- 查询标注团队列表
- 创建标注团队
- 查询标注团队详情
- 更新标注团队
- 删除标注团队
- 向标注成员发送邮件
- 查询所有团队的标注成员列表
- 查询标注团队的成员列表
- 创建标注团队的成员
- 批量删除标注团队成员
- 查询标注团队成员详情
- 更新标注团队成员
- 删除标注团队成员
- 查询数据集导入任务列表
- 创建导入任务
- 查询数据集导入任务的详情
- 查询数据集导出任务列表
- 创建数据集导出任务
- 查询数据集导出任务的状态
- 同步数据集
- 查询数据集同步任务的状态
- 查询智能标注的样本列表
- 查询单个智能标注样本的信息
- 分页查询智能任务列表
- 启动智能任务
- 获取智能任务的信息
- 停止智能任务
- 查询处理任务列表
- 创建处理任务
- 查询数据处理的算法类别
- 查询处理任务详情
- 更新处理任务
- 删除处理任务
- 查询数据处理任务的版本列表
- 创建数据处理任务版本
- 查询数据处理任务的版本详情
- 删除数据处理任务的版本
- 查询数据处理任务版本的结果展示
- 停止数据处理任务的版本
- 开发环境(旧版)
- 训练管理(旧版)
-
数据管理(旧版)
- SDK参考
- 场景代码示例
-
故障排除
- 通用问题
- 自动学习
-
开发环境
- 环境配置故障
- 实例故障
- 代码运行故障
- JupyterLab插件故障
-
VS Code连接开发环境失败故障处理
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”如何解决?
- 报错“Connection permission denied (publickey)”如何解决
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
- VSCode远程连接时卡顿,或Python调试插件无法使用如何处理?
-
自定义镜像故障
- Notebook自定义镜像故障基础排查
- 镜像保存时报错“there are processes in 'D' status, please check process status using 'ps -aux' and kill all the 'D' status processes”或“Buildimge,False,Error response from daemon,Cannot pause container xxx”如何解决?
- 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决?
- 保存镜像时报错“too many layers in your image”如何解决?
- 镜像保存时报错“The container size (xG) is greater than the threshold (25G)”如何解决?
- 镜像保存时报错“BuildImage,True,Commit successfully|PushImage,False,Task is running.”
- 使用自定义镜像创建Notebook后打开没有kernel
- 用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决?
- 用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found)
- 用户使用torch报错Unexpected error from cudaGetDeviceCount
- 其他故障
-
训练作业
- OBS操作相关故障
-
云上迁移适配故障
- 无法导入模块
- 训练作业日志中提示“No module named .*”
- 如何安装第三方包,安装报错的处理方法
- 下载代码目录失败
- 训练作业日志中提示“No such file or directory”
- 训练过程中无法找到so文件
- ModelArts训练作业无法解析参数,日志报错
- 训练输出路径被其他作业使用
- PyTorch1.0引擎提示“RuntimeError: std:exception”
- MindSpore日志提示“ retCode=0x91, [the model stream execute failed]”
- 使用moxing适配OBS路径,pandas读取文件报错
- 日志提示“Please upgrade numpy to >= xxx to use this pandas version”
- 重装的包与镜像装CUDA版本不匹配
- 创建训练作业提示错误码ModelArts.2763
- 训练作业日志中提示 “AttributeError: module '***' has no attribute '***'”
- 系统容器异常退出
- 硬盘限制故障
- 外网访问限制
- 权限问题
- GPU相关问题
-
业务代码问题
- 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields”
- 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0”
- 训练作业失败,返回错误码139
- 训练作业失败,如何使用开发环境调试训练代码?
- 日志提示“ '(slice(0, 13184, None), slice(None, None, None))' is an invalid key”
- 日志报错“DataFrame.dtypes for data must be int, float or bool”
- 日志提示“CUDNN_STATUS_NOT_SUPPORTED. ”
- 日志提示“Out of bounds nanosecond timestamp”
- 日志提示“Unexpected keyword argument passed to optimizer”
- 日志提示“no socket interface found”
- 日志提示“Runtimeerror: Dataloader worker (pid 46212 ) is killed by signal: Killed BP”
- 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”
- 日志提示“No module name 'unidecode'”
- 分布式Tensorflow无法使用“tf.variable”
- MXNet创建kvstore时程序被阻塞,无报错
- 日志出现ECC错误,导致训练作业失败
- 超过最大递归深度导致训练作业失败
- 使用预置算法训练时,训练失败,报“bndbox”错误
- 训练作业进程异常退出
- 训练作业进程被kill
- 预置算法运行故障
- 训练作业运行失败
- 专属资源池创建训练作业
- 训练作业性能问题
- Ascend相关问题
-
推理部署
-
模型管理
- 创建模型失败,如何定位和处理问题?
- 导入模型提示该账号受限或者没有操作权限
- 用户创建模型时构建镜像或导入文件失败
- 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的?
- 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志
- 通过OBS创建模型时,构建日志中提示pip下载包失败
- 通过自定义镜像创建模型失败
- 导入模型后部署服务,提示磁盘不足
- 创建模型成功后,部署服务报错,如何排查代码问题
- 自定义镜像导入配置运行时依赖无效
- 通过API接口查询模型详情,model_name返回值出现乱码
- 导入模型提示模型或镜像大小超过限制
- 导入模型提示单个模型文件超过5G限制
- 订阅的模型一直处于等待同步状态
- 创建模型失败,提示模型镜像构建任务超时,没有构建日志
-
服务部署
- 自定义镜像模型部署为在线服务时出现异常
- 部署的在线服务状态为告警
- 服务启动失败
- 服务部署、启动、升级和修改时,拉取镜像失败如何处理?
- 服务部署、启动、升级和修改时,镜像不断重启如何处理?
- 服务部署、启动、升级和修改时,容器健康检查失败如何处理?
- 服务部署、启动、升级和修改时,资源不足如何处理?
- 模型使用CV2包部署在线服务报错
- 服务状态一直处于“部署中”
- 服务启动后,状态断断续续处于“告警中”
- 服务部署失败,报错No Module named XXX
- IEF节点边缘服务部署失败
- 批量服务输入/输出obs目录不存在或者权限不足
- 部署在线服务出现报错No CUDA runtime is found
- 使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错
- 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments
- 内存不足如何处理?
- 服务预测
-
模型管理
- MoXing
- API/SDK
- 资源池
-
Lite Server
- GPU裸金属服务器使用EulerOS内核误升级如何解决
- GPU A系列裸金属服务器无法获取显卡如何解决
- GPU裸金属服务器无法Ping通如何解决
- GPU A系列裸金属服务器RoCE带宽不足如何解决?
- GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML
- 训练速度突然下降以及执行nvidia-smi卡顿如何解决?
- GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error
- 使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed
- 华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案
- GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败
- 裸金属服务器Euler OS升级NetworkManager-config-server导致SSH链接故障解决方案
- Lite Cluster
-
常见问题
- 权限相关
- 存储相关
- Standard自动学习
- Standard Workflow
-
Standard数据准备
- 在ModelArts数据集中添加图片对图片大小有限制吗?
- 如何将本地标注的数据导入ModelArts?
- 在ModelArts中数据标注完成后,标注结果存储在哪里?
- 在ModelArts中如何将标注结果下载至本地?
- 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
- ModelArts团队标注的数据分配机制是什么?
- 如何将两个ModelArts数据集合并?
- 在ModelArts中同一个账户,图片展示角度不同是为什么?
- 在ModelArts中智能标注完成后新加入数据需要重新训练吗?
- 在ModelArts中如何将图片划分到验证集或者训练集?
- 在ModelArts中物体检测标注时能否自定义标签?
- ModelArts数据集新建的版本找不到怎么办?
- 如何切分ModelArts数据集?
- 如何删除ModelArts数据集中的图片?
-
Standard Notebook
- ModelArts的Notebook是否支持Keras引擎?
- 如何在ModelArts的Notebook中上传下载OBS文件?
- ModelArts的Notebook实例upload后,数据会上传到哪里?
- 在ModelArts中如何将Notebook A的数据复制到Notebook B中?
- 在ModelArts的Notebook中如何对OBS的文件重命名?
- 在ModelArts的Notebook中如何使用pandas库处理OBS桶中的数据?
- 在ModelArts的Notebook中,如何访问其他账号的OBS桶?
- 在ModelArts的Notebook中JupyterLab默认工作路径是什么?
- 如何查看ModelArts的Notebook使用的cuda版本?
- 在ModelArts的Notebook中如何获取本机外网IP?
- ModelArts的Notebook有代理吗?如何关闭?
- 在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel?
- 在ModelArts的Notebook中如何将git clone的py文件变为ipynb文件?
- 在ModelArts的Notebook实例重启时,数据集会丢失吗?
- 在ModelArts的Notebook的Jupyterlab可以安装插件吗?
- 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练?
- 如何在ModelArts的Notebook的CodeLab上安装依赖?
- 在ModelArts的Notebook中安装远端插件时不稳定要怎么办?
- 在ModelArts的Notebook中实例重新启动后要怎么连接?
- 在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办?
- 在ModelArts的Notebook中使用VS Code如何查看远端日志?
- 在ModelArts的Notebook中如何打开VS Code的配置文件settings.json?
- 在ModelArts的Notebook中如何设置VS Code背景色为豆沙绿?
- 在ModelArts的Notebook中如何设置VS Code远端默认安装的插件?
- 在ModelArts的VS Code中如何把本地插件安装到远端或把远端插件安装到本地?
- 在ModelArts的Notebook中,如何使用昇腾多卡进行调试?
- 在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多?
- 在ModelArts的Notebook中使用MoXing时,如何进行增量训练?
- 在ModelArts的Notebook中如何查看GPU使用情况?
- 在ModelArts的Notebook中如何在代码中打印GPU使用信息?
- 在ModelArts的Notebook中JupyterLab的目录、Terminal的文件和OBS的文件之间的关系是什么?
- 如何在ModelArts的Notebook实例中使用ModelArts数据集?
- pip介绍及常用命令
- 在ModelArts的Notebook中不同规格资源/cache目录的大小是多少?
- 资源超分对在ModelArts的Notebook实例有什么影响?
- 如何在Notebook中安装外部库?
- 在ModelArts的Notebook中,访问外网速度不稳定怎么办?
-
Standard模型训练
- 在ModelArts训练得到的模型欠拟合怎么办?
- 在ModelArts中训练好后的模型如何获取?
- 在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练?
- 在ModelArts上训练模型如何配置输入输出数据?
- 在ModelArts上如何提升训练效率并减少与OBS的交互?
- 在ModelArts中使用Moxing复制数据时如何定义路径变量?
- 在ModelArts上如何创建引用第三方依赖包的训练作业?
- 在ModelArts训练时如何安装C++的依赖库?
- 在ModelArts训练作业中如何判断文件夹是否复制完毕?
- 如何在ModelArts训练作业中加载部分训练好的参数?
- ModelArts训练时使用os.system('cd xxx')无法进入文件夹怎么办?
- 在ModelArts训练代码中,如何获取依赖文件所在的路径?
- 自如何获取ModelArts训练容器中的文件实际路径?
- ModelArts训练中不同规格资源“/cache”目录的大小是多少?
- ModelArts训练作业为什么存在/work和/ma-user两种超参目录?
- 如何查看ModelArts训练作业资源占用情况?
- 如何将在ModelArts中训练好的模型下载或迁移到其他账号?
-
Standard推理部署
- 如何将Keras的.h5格式的模型导入到ModelArts中?
- ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数?
- 在ModelArts中使用自定义镜像创建在线服务,如何修改端口?
- ModelArts平台是否支持多模型导入?
- 在ModelArts中导入模型对于镜像大小有什么限制?
- ModelArts在线服务和批量服务有什么区别?
- ModelArts在线服务和边缘服务有什么区别?
- 在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源?
- ModelArts线上训练得到的模型是否支持离线部署在本地?
- ModelArts在线服务预测请求体大小限制是多少?
- ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突?
- ModelArts在线服务预测时,如何提高预测速度?
- 在ModelArts中调整模型后,部署新版本模型能否保持原API接口不变?
- ModelArts在线服务的API接口组成规则是什么?
- ModelArts在线服务处于运行中时,如何填写request header和request body?
-
Standard镜像相关
- 不在同一个主账号下,如何使用他人的自定义镜像创建Notebook?
- 如何登录并上传镜像到SWR?
- 在Dockerfile中如何给镜像设置环境变量?
- 如何通过docker镜像启动容器?
- 如何在ModelArts的Notebook中配置Conda源?
- ModelArts的自定义镜像软件版本匹配有哪些注意事项?
- 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么?
- 如何保证自定义镜像能不因为超过35G而保存失败?
- 如何减小本地或ECS构建镜像的目的镜像的大小?
- 镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗?
- 在ModelArts镜像管理注册镜像报错ModelArts.6787怎么处理?
- 用户如何设置默认的kernel?
- Standard专属资源池
- Studio
- Edge
- API/SDK
- Lite Server
- Lite Cluster
- 历史文档待下线
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
预置框架启动文件的启动流程说明
ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。
本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。
Ascend-Powered-Engine框架启动原理
在ModelArts创建训练作业界面选择AI框架时,有一个AI框架是“Ascend-Powered-Engine”,它既不是一个AI框架(如:PyTorch、TensorFlow)也不是一个并行执行框架(如:MPI),而是适配加速芯片Ascend的一组AI框架+运行环境+启动方式的集合。
由于主流的Snt9系列Ascend加速卡都跑在ARM CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推出的统一计算架构)计算库,Ascend-Powered-Engine引擎的镜像中安装了与Ascend驱动适配的CANN(华为针对AI场景推出的异构计算架构)计算库。
提交训练作业后,ModelArts Standard平台会自动运行训练作业的启动文件。
Ascend-Powered-Engine框架的启动文件的默认启动方式如下:
每个训练作业的启动文件的运行次数取决于任务卡数,即在训练作业运行时,有N个任务卡数训练作业内就会运行N次启动文件。例如,单机1卡,则worker-0任务的启动文件会被运行1次;单机8卡,则worker-0任务的启动文件会被运行8次。因此需要避免在启动文件中进行端口监听。
启动文件会被自动设置如下环境变量:
- RANK_TABLE_FILE:rank table file(RTF)文件路径。
- ASCEND_DEVICE_ID:逻辑device_id,例如单卡训练,该值始终为 0。
- RANK_ID:可以理解为训练作业级的device逻辑(顺序)编号。
- RANK_SIZE:根据RTF中device的数目设置该值,例如“4 * snt9b”,则该值即为4。
当需要启动文件仍然在逻辑上仅运行1次时,则可以在启动文件中判断“ASCEND_DEVICE_ID”的值,当值为“0”则执行逻辑,当值为非0则直接退出。
Ascend-Powered-Engine框架对应的代码示例“mindspore-verification.py”,请参见训练mindspore-verification.py文件。
Ascend-Powered-Engine框架单机启动命令和分布式启动命令无区别。
Ascend-Powered-Engine框架支持多种启动方式来启动“启动文件”,默认是基于“RANK_TABLE_FILE”启动,也可以通过配置“MA_RUN_METHOD”环境变量使用其他方式来启动。MA_RUN_METHOD环境变量支持torchrun和msrun。
- 当“MA_RUN_METHOD=torchrun”时,表示ModelArts Standard平台使用torchrun命令启动训练作业的“启动文件”。
说明:
要求PyTorch版本大于等于1.11.0。
- 单机时,ModelArts Standard平台使用如下命令启动训练作业的“启动文件”。
torchrun --standalone --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} ${MA_EXTRA_TORCHRUN_PARAMS} "启动文件" {arg1} {arg2} ...
- 多机时,ModelArts Standard平台使用如下命令启动训练作业的“启动文件”。
torchrun --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} --node_rank=${VC_TASK_INDEX} --master_addr={master_addr} --master_port=${MA_TORCHRUN_MASTER_PORT} --rdzv_id={ma_job_name} --rdzv_backend=static ${MA_EXTRA_TORCHRUN_PARAMS} "启动文件" {arg1} {arg2} ...
参数说明如下:
- standalone:标识为单任务实例作业。
- nnodes:任务实例个数。
- nproc_per_node:每个任务实例启动的主进程数,设置为任务分配的NPU数相同。
- node_rank:任务rank,用于多任务分布式训练。
- master_addr:主任务(rank 0)的地址,设置为任务worker-0的通信域名。
- master_port:在主任务(rank 0)上,用于分布式训练期间通信的端口。默认设置为18888端口。当遇到master_port冲突问题时,可通过设置MA_TORCHRUN_MASTER_PORT环境变量值修改端口配置。
- rdzv_id:Rendezvous标识,设置为带有训练作业ID的值。
- rdzv_backend:Rendezvous后端,固定设置为static,即不使用Rendezvous,而是使用master_addr和master_port配置。另外,可通过设置MA_EXTRA_TORCHRUN_PARAMS环境变量值,以增加额外的torchrun命令参数,或是覆盖预设的torchrun命令参数。例如配置torchrun命令中rdzv_conf参数的训练作业API环境变量的部分示例如下:
"environments": { "MA_RUN_METHOD": "torchrun", "MA_EXTRA_TORCHRUN_PARAMS": "--rdzv_conf=timeout=7200" }
说明:
如果在torchrun初始化分布式一致性协商阶段出现“RuntimeError:Socket Timeout”错误时,可以通过增加如下环境变量再次创建训练作业以查看torchrun初始化阶段的详细信息,进一步排查问题。
- LOGLEVEL=INFO
- TORCH_CPP_LOG_LEVEL=INFO
- TORCH_DISTRIBUTED_DEBUG=DETAIL
出现“RuntimeError: Socket Timeout”错误,一般是因为不同任务执行torchrun命令的时机差距过大导致的。torchrun命令执行时机差距过大,大多是因为在torchrun命令被执行之前任务还有一些初始化动作,例如下载训练数据集、CKPT等。这些初始化动作执行耗时差距过大会直接导致出现Socket Timeout错误。所以遇到Socket Timeout问题时首先需要排查的是各个任务执行torchrun的时间点差距是否在合理范围内,如果时间点差距过大,需要优化执行torchrun命令之前的初始化动作,使其时间点差距在合理范围内。
- 单机时,ModelArts Standard平台使用如下命令启动训练作业的“启动文件”。
- 当“MA_RUN_METHOD=msrun”时,表示ModelArts Standard平台使用msrun命令启动训练作业的“启动文件”。
说明:
要求MindSpore版本大于等于2.3.0。
该方案支持动态组网和基于rank table file文件组网两种方式。当配置了环境变量MS_RANKTABLE_ENABLE="True",则msrun会读取rank table file文件内容进行组网。否则默认使用动态组网。
msrun使用如下命令启动训练作业的“启动文件”。
msrun --worker_num=${msrun_worker_num} --local_worker_num=${MA_NUM_GPUS} --master_addr=${msrun_master_addr} --node_rank=${VC_TASK_INDEX} --master_port=${msrun_master_port} --log_dir=${msrun_log_dir} --join=True --cluster_time_out=${MSRUN_CLUSTER_TIME_OUT} --rank_table_file=${msrun_rank_table_file} "启动文件" {arg1} {arg2} ...
参数说明如下:
- worker_num:所有进程个数。因为一个卡起一个进程,所以也表示使用总卡数。
- local_worker_num:当前节点进程个数,即当前节点使用的卡数。
- master_addr:msrun组网调度进程所在节点的IP地址,单机场景无需配置。
- master_port:msrun组网调度进程的端口。
- node_rank:当前节点的编号。
- log_dir:msrun组网和各个进程的日志输出地址。
- join:训练进程拉起后,msrun进程是否仍存在,默认配置为“True”,等待所有进程退出后再退出。
- cluster_time_out:集群组网超时时间,默认是“600s”,可通过环境变量“MSRUN_CLUSTER_TIME_OUT”控制。
- rank_table_file:rank table file文件地址,如果配置了环境变量“MS_RANKTABLE_ENABLE="True"”,启动时会增加该参数。
PyTorch-GPU框架启动原理
单机多卡场景下平台会为启动文件额外拼接 --init_method "tcp://<ip>:<port>" 参数。
多机多卡场景下平台会为启动文件额外拼接 --init_method "tcp://<ip>:<port>" --rank <rank_id> --world_size <node_num>参数。
启动文件需要解析上述参数。
PyTorch-GPU框架的代码示例,请参见示例:创建DDP分布式训练(PyTorch+GPU)中的方式一
TensorFlow-GPU框架启动原理
单机场景下(即选择的实例数为1),ModelArts只会在一个节点上启动一个训练容器,该训练容器独享节点规格的可使用资源。
多机场景下(即选择的实例数大于1),ModelArts会优先在相同节点上启动一个parameter server(以下简称ps)和一个worker,平台会自动一比一分配ps与worker任务。例如,双机场景会分配2个ps和2个worker任务,并为启动文件额外注入如下参数。
--task_index <VC_TASK_INDEX> --ps_hosts <TF_PS_HOSTS> --worker_hosts <TF_WORKER_HOSTS> --job_name <MA_TASK_NAME>
启动文件需要解析如下参数。
- VC_TASK_INDEX:task序号,如0、1、2。
- TF_PS_HOSTS :ps节点地址数组,如“[xx-ps-0.xx:TCP_PORT,xx-ps-1.xx:TCP_PORT]”,TCP_PORT是一个在5000~10000的随机端口。
- TF_WORKER_HOSTS:worker节点地址数组,如“[xx-worker-0.xx:TCP_PORT,xx-worker-1.xx:TCP_PORT]”,TCP_PORT是一个在5000~10000的随机端口。
- MA_TASK_NAME:任务名称,取值是ps或worker。
具体示例请参见:TensorFlow-GPU框架的代码示例mnist.py(单机)。
Horovod/MPI/MindSpore-GPU
使用Horovod/MPI/MindSpore-GPU预置框架来运行的启动文件,平台自动以mpirun命令启动之。使用ModelArts Standard训练相应预置引擎,用户仅需关注启动文件(即训练脚本)的编写;mpirun命令和训练作业集群的构建都由平台自动完成。平台不会为启动文件额外拼接参数。
“pytorch_synthetic_benchmark.py”文件示例如下:
import argparse import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim as optim import torch.utils.data.distributed from torchvision import models import horovod.torch as hvd import timeit import numpy as np # Benchmark settings parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') parser.add_argument('--model', type=str, default='resnet50', help='model to benchmark') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--num-warmup-batches', type=int, default=10, help='number of warm-up batches that don\'t count towards benchmark') parser.add_argument('--num-batches-per-iter', type=int, default=10, help='number of batches per benchmark iteration') parser.add_argument('--num-iters', type=int, default=10, help='number of benchmark iterations') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--use-adasum', action='store_true', default=False, help='use adasum algorithm to do reduction') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) cudnn.benchmark = True # Set up standard model. model = getattr(models, args.model)() # By default, Adasum doesn't need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if args.cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler) # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Set up fixed fake data data = torch.randn(args.batch_size, 3, 224, 224) target = torch.LongTensor(args.batch_size).random_() % 1000 if args.cuda: data, target = data.cuda(), target.cuda() def benchmark_step(): optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() def log(s, nl=True): if hvd.rank() != 0: return print(s, end='\n' if nl else '') log('Model: %s' % args.model) log('Batch size: %d' % args.batch_size) device = 'GPU' if args.cuda else 'CPU' log('Number of %ss: %d' % (device, hvd.size())) # Warm-up log('Running warmup...') timeit.timeit(benchmark_step, number=args.num_warmup_batches) # Benchmark log('Running benchmark...') img_secs = [] for x in range(args.num_iters): time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter) img_sec = args.batch_size * args.num_batches_per_iter / time log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) img_secs.append(img_sec) # Results img_sec_mean = np.mean(img_secs) img_sec_conf = 1.96 * np.std(img_secs) log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) log('Total img/sec on %d %s(s): %.1f +-%.1f' % (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))
run_mpi.sh文件内容如下:
#!/bin/bash MY_HOME=/home/ma-user MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"} MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"} MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}} MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"} MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process" if [ -z ${MY_MPI_SLOTS} ]; then echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1" MY_MPI_SLOTS="1" fi printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: ${MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n" env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > ${MY_MPI_TUNE_FILE} # add -x to each line sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE} sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config # start sshd service bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config" # confirm the sshd is up netstat -anp | grep LIS | grep ${MY_SSHD_PORT} if [ $MY_TASK_INDEX -eq 0 ]; then # generate the hostfile of mpi for ((i=0; i<$MA_NUM_HOSTS; i++)) do eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME} echo "[run_mpi] hostname: ${hostname}" ip="" while [ -z "$ip" ]; do ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g') sleep 1 done echo "[run_mpi] resolved ip: ${ip}" # test the sshd is up while : do if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then break fi sleep 1 done echo "[run_mpi] the sshd of ip ${ip} is up" echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile done printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n" fi RET_CODE=0 if [ $MY_TASK_INDEX -eq 0 ]; then echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S") np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} )) echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@" # execute mpirun at worker-0 # mpirun mpirun \ -np ${np} \ -hostfile ${MY_HOME}/hostfile \ -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \ -tune ${MY_MPI_TUNE_FILE} \ -bind-to none -map-by slot \ -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x NCCL_SOCKET_FAMILY=AF_INET \ -x HOROVOD_MPI_THREADS_DISABLE=1 \ -x LD_LIBRARY_PATH \ -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \ "$@" RET_CODE=$? if [ $RET_CODE -ne 0 ]; then echo "[run_mpi] exec command failed, exited with $RET_CODE" else echo "[run_mpi] exec command successfully, exited with $RET_CODE" fi # stop 1...N worker by killing the sleep proc sed -i '1d' ${MY_HOME}/hostfile if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc" sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n" mpirun \ --hostfile ${MY_HOME}/hostfile \ --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \ --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \ -x PATH -x LD_LIBRARY_PATH \ pkill sleep \ > /dev/null 2>&1 fi echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S") else echo "[run_mpi] the training log is in worker-0" sleep 365d echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S") fi exit $RET_CODE