更新时间:2024-12-16 GMT+08:00
分享

从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。

场景描述

目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用Ascend规格资源运行训练作业。

  • ubuntu-18.04
  • cann-6.3.RC2 (商用版本)
  • python-3.7.13
  • mindspore-2.1.1
  • 本教程以cann-6.3.RC2、mindspore-2.1.1为例介绍。
  • 本示例仅用于示意Ascend容器镜像制作流程,且在匹配正确的Ascend驱动/固件版本的专属资源池上运行通过。

操作流程

使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:

  1. Step1 创建OBS桶和文件夹
  2. Step2 准备脚本文件并上传至OBS中
  3. Step3 制作自定义镜像
  4. Step4 上传镜像至SWR
  5. Step5 在ModelArts上创建Notebook并调试
  6. Step6 在ModelArts上创建训练作业

约束限制

  • 由于案例中需要下载商用版CANN,因此本案例仅面向有下载权限的渠道用户,非渠道用户建议参考其他自定义镜像制作教程。
  • Mindspore版本与CANN版本,CANN版本与Ascend驱动/固件版本均有严格的匹配关系,版本不匹配会导致训练失败。

前提条件

已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。

Step1 创建OBS桶和文件夹

在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。如下示例中,请创建命名为“test-modelarts”的桶,并创建如表1所示的文件夹。

创建OBS桶和文件夹的操作指导请参见创建桶新建文件夹

请确保您使用的OBS与ModelArts在同一区域。

表1 OBS桶文件夹列表

文件夹名称

用途

obs://test-modelarts/ascend/demo-code/

用于存储Ascend训练脚本文件。

obs://test-modelarts/ascend/demo-code/run_ascend/

用于存储Ascend训练脚本的启动脚本。

obs://test-modelarts/ascend/log/

用于存储训练日志文件。

Step2 准备脚本文件并上传至OBS中

  1. 准备本案例所需训练脚本mindspore-verification.py文件和Ascend的启动脚本文件(共5个)。

    mindspore-verification.py和run_ascend.py脚本文件在创建训练作业时的“启动命令”参数中调用,具体请参见启动命令

    run_ascend.py脚本运行时会调用common.py、rank_table.py、manager.py、fmk.py脚本。

  2. 上传训练脚本mindspore-verification.py文件至OBS桶的“obs://test-modelarts/ascend/demo-code/”文件夹下。
  3. 上传Ascend的启动脚本文件(共5个)至OBS桶的“obs://test-modelarts/ascend/demo-code/run_ascend/”文件夹下。

Step3 制作自定义镜像

此处介绍如何通过编写Dockerfile文件制作自定义镜像的操作步骤。

目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。

  • ubuntu-18.04
  • cann-6.3.RC2(商用版本)
  • python-3.7.13
  • mindspore-2.1.1

Mindspore版本与CANN版本,CANN版本和Ascend驱动/固件版本均有严格的匹配关系,版本不匹配会导致训练失败。

本示例仅用于示意Ascend容器镜像制作流程,且在匹配正确的Ascend驱动/固件版本的专属资源池上运行通过。

  1. 准备一台Linux aarch64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。

    购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器“CPU架构”选择“x86计算”“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。

  2. 安装Docker。

    以Linux aarch64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档

    curl -fsSL get.docker.com -o get-docker.sh
    sh get-docker.sh

    如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。

    启动docker。
    systemctl start docker 
  3. 确认Docker Engine版本。执行如下命令。
    docker version | grep -A 1 Engine
    命令回显如下。
     Engine:
      Version:          18.09.0

    推荐使用大于等于该版本的Docker Engine来制作自定义镜像。

  4. 准备名为context的文件夹。
    mkdir -p context
  5. 准备可用的pip源文件pip.conf。本示例使用华为开源镜像站提供的pip源,其pip.conf文件内容如下。
    [global]
    index-url = https://repo.huaweicloud.com/repository/pypi/simple
    trusted-host = repo.huaweicloud.com
    timeout = 120

    在华为开源镜像站https://mirrors.huaweicloud.com/home中,搜索pypi,可以查看pip.conf文件内容。

  6. 准备可用的apt源文件Ubuntu-Ports-bionic.list。本示例使用华为开源镜像站提供的apt源,执行如下命令获取apt源文件。
    wget -O Ubuntu-Ports-bionic.list https://repo.huaweicloud.com/repository/conf/Ubuntu-Ports-bionic.list

    在华为开源镜像站https://mirrors.huaweicloud.com/home中,搜索Ubuntu-Ports,可以查看获取apt源文件的命令。

  7. 下载CANN 6.3.RC2-linux aarch64与mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl安装文件。
    • 下载run文件“Ascend-cann-nnae_6.3.RC2_linux-aarch64.run”(下载链接)。
    • 下载whl文件“mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl”(下载链接)。

    ModelArts当前仅支持CANN商用版本,不支持社区版。

  8. 下载Miniconda3安装文件。

    使用地址https://repo.anaconda.com/miniconda/Miniconda3-py37_4.10.3-Linux-aarch64.sh,下载Miniconda3-py37-4.10.3安装文件(对应python 3.7.10)。

  9. 将上述pip源文件、*.run文件、*.whl文件、Miniconda3安装文件放置在context文件夹内,context文件夹内容如下。
    context
    ├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
    ├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
    ├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
    ├── pip.conf
    └── Ubuntu-Ports-bionic.list
  10. 编写容器镜像Dockerfile文件。
    在context文件夹内新建名为Dockerfile的空文件,并将下述内容写入其中。
    # 容器镜像构建主机需要连通公网
    FROM arm64v8/ubuntu:18.04 AS builder
    
    # 基础容器镜像的默认用户已经是 root
    # USER root
    
    # 安装 OS 依赖(使用华为开源镜像站)
    COPY Ubuntu-Ports-bionic.list /tmp
    RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
        mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
        echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
        apt-get update && \
        apt-get install -y \
        # utils
        ca-certificates vim curl \
        # CANN 6.3.RC2
        gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3 && \
        apt-get clean && \
        mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
        # 修改 CANN 6.3.RC2 安装目录的父目录权限,使得 ma-user 可以写入
        chmod o+w /usr/local
    
    RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
    
    # 设置容器镜像默认用户与工作目录
    USER ma-user
    WORKDIR /home/ma-user
    
    # 使用华为开源镜像站提供的 pypi 配置
    RUN mkdir -p /home/ma-user/.pip/
    COPY --chown=ma-user:100 pip.conf /home/ma-user/.pip/pip.conf
    
    # 复制待安装文件到基础容器镜像中的 /tmp 目录
    COPY --chown=ma-user:100 Miniconda3-py37_4.10.3-Linux-aarch64.sh /tmp
    
    # https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
    # 安装 Miniconda3 到基础容器镜像的 /home/ma-user/miniconda3 目录中
    RUN bash /tmp/Miniconda3-py37_4.10.3-Linux-aarch64.sh -b -p /home/ma-user/miniconda3
    
    ENV PATH=$PATH:/home/ma-user/miniconda3/bin
    
    # 安装 CANN 6.3.RC2 Python Package 依赖
    RUN pip install numpy~=1.14.3 decorator~=4.4.0 sympy~=1.4 cffi~=1.12.3 protobuf~=3.11.3 \
        attrs pyyaml pathlib2 scipy requests psutil absl-py
    
    # 安装 CANN 6.3.RC2 至 /usr/local/Ascend 目录
    COPY --chown=ma-user:100 Ascend-cann-nnae_6.3.RC2_linux-aarch64.run /tmp
    RUN chmod +x /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run && \
        /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run --install --install-path=/usr/local/Ascend
    
    # 安装 MindSpore 2.1.1
    COPY --chown=ma-user:100 mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl /tmp
    RUN chmod +x /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl && \
        pip install /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
    
    # 构建最终容器镜像
    FROM arm64v8/ubuntu:18.04
    
    # 安装 OS 依赖(使用华为开源镜像站)
    COPY Ubuntu-Ports-bionic.list /tmp
    RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
        mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
        echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
        apt-get update && \
        apt-get install -y \
        # utils
        ca-certificates vim curl \
        # CANN 6.3.RC2
        gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3 && \
        apt-get clean && \
        mv /etc/apt/sources.list.bak /etc/apt/sources.list
    
    RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
    
    # 从上述 builder stage 中复制目录到当前容器镜像的同名目录
    COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
    COPY --chown=ma-user:100 --from=builder /home/ma-user/Ascend /home/ma-user/Ascend
    COPY --chown=ma-user:100 --from=builder /home/ma-user/var /home/ma-user/var
    COPY --chown=ma-user:100 --from=builder /usr/local/Ascend /usr/local/Ascend
    
    # 设置容器镜像预置环境变量
    # 请务必设置 CANN 相关环境变量
    # 请务必设置 Ascend Driver 相关环境变量
    # 请务必设置 PYTHONUNBUFFERED=1, 以免日志丢失
    ENV PATH=$PATH:/usr/local/Ascend/nnae/latest/bin:/usr/local/Ascend/nnae/latest/compiler/ccec_compiler/bin:/home/ma-user/miniconda3/bin \
        LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64:/usr/local/Ascend/driver/lib64/common:/usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/nnae/latest/lib64:/usr/local/Ascend/nnae/latest/lib64/plugin/opskernel:/usr/local/Ascend/nnae/latest/lib64/plugin/nnengine \
        PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/nnae/latest/python/site-packages:/usr/local/Ascend/nnae/latest/opp/built-in/op_impl/ai_core/tbe \
        ASCEND_AICPU_PATH=/usr/local/Ascend/nnae/latest \
        ASCEND_OPP_PATH=/usr/local/Ascend/nnae/latest/opp \
        ASCEND_HOME_PATH=/usr/local/Ascend/nnae/latest \
        PYTHONUNBUFFERED=1
    
    # 设置容器镜像默认用户与工作目录
    USER ma-user
    WORKDIR /home/ma-user

    关于Dockerfile文件编写的更多指导内容参见Docker官方文档

  11. 确认已创建完成Dockerfile文件。此时context文件夹内容如下。
    context
    ├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
    ├── Dockerfile
    ├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
    ├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
    ├── pip.conf
    └── Ubuntu-Ports-bionic.list
  12. 构建容器镜像。在Dockerfile文件所在的目录执行如下命令构建容器镜像。
    1
    docker build . -t mindspore:2.1.1-cann6.3.RC2
    
    构建过程结束时出现如下构建日志说明镜像构建成功。
    Successfully tagged mindspore:2.1.1-cann6.3.RC2
  13. 将制作完成的镜像上传至SWR服务,具体参见Step4 上传镜像至SWR

Step4 上传镜像至SWR

本章节介绍如何将制作好的镜像上传至SWR服务,方便后续在ModelArts上创建训练作业时调用。

  1. 登录容器镜像服务控制台,选择区域,要和ModelArts区域保持一致,否则无法选择到镜像。
  2. 单击右上角“创建组织”,输入组织名称完成组织创建。请自定义组织名称,本示例使用“deep-learning”,下面的命令中涉及到组织名称“deep-learning”也请替换为自定义的值。
  3. 单击右上角“登录指令”,获取登录访问指令,本文选择复制临时登录指令。
  4. 以root用户登录本地环境,输入复制的SWR临时登录指令。
  5. 上传镜像至容器镜像服务镜像仓库。
    1. 使用docker tag命令给上传镜像打标签。
      #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。
      sudo docker tag mindspore:2.1.1-cann6.3.RC2 swr.{region}.{domain}/deep-learning/mindspore:2.1.1-cann6.3.RC2
      #以华为云北京四为例:
      sudo docker tag mindspore:2.1.1-cann6.3.RC2 swr.cn-north-4.myhuaweicloud.com/deep-learning/mindspore:2.1.1-cann6.3.RC2
    2. 使用docker push命令上传镜像。
      #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。
      sudo docker push swr.{region}.{domain}/deep-learning/mindspore:2.1.1-cann6.3.RC2
      #以华为云北京四为例:
      sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mindspore:2.1.1-cann6.3.RC2
  6. 完成镜像上传后,在“容器镜像服务控制台>我的镜像”页面可查看已上传的自定义镜像。

    “swr.cn-north-4.myhuaweicloud.com/deep-learning/mindspore:2.1.1-cann6.3.RC2”即为此自定义镜像的“SWR_URL”

Step5 在ModelArts上创建Notebook并调试

  1. 将上传到SWR上的镜像注册到ModelArts的镜像管理中。

    登录ModelArts管理控制台,在左侧导航栏中选择“镜像管理 ”,单击“注册镜像”,根据界面提示注册镜像。注册后的镜像可以用于创建Notebook。

  2. 在Notebook中使用自定义镜像创建Notebook并调试,调试成功后,保存镜像。
    1. 在Notebook中使用自定义镜像创建Notebook操作请参见基于自定义镜像创建Notebook实例
    2. 保存Notebook镜像操作请参见保存Notebook镜像环境
  3. 已有的镜像调试成功后,再使用ModelArts训练模块训练作业

Step6 在ModelArts上创建训练作业

  1. 登录ModelArts管理控制台,在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。
  2. “创建训练作业”页面,填写相关参数信息,然后单击“提交”
    • 创建方式:选择“自定义算法”
    • 启动方式:选择“自定义”
    • 镜像地址:“swr.cn-north-4.myhuaweicloud.com/deep-learning/mindspore:2.1.1-cann6.3.RC2”
    • 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/ascend/demo-code/”
    • 启动命令:“python ${MA_JOB_DIR}/demo-code/run_ascend/run_ascend.py python ${MA_JOB_DIR}/demo-code/mindspore-verification.py”
    • 资源池:选择专属资源池
    • 类型:选择驱动/固件版本匹配的专属资源池Ascend规格。
    • 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://test-modelarts/ascend/log/”
  3. “规格确认”页面,确认训练作业的参数信息,确认无误后单击“提交”
  4. 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。

    训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如图1所示。

    图1 专属资源池Ascend规格运行日志信息

训练mindspore-verification.py文件

mindspore-verification.py文件内容如下:

import os
import numpy as np
from mindspore import Tensor
import mindspore.ops as ops
import mindspore.context as context

print('Ascend Envs')
print('------')
print('JOB_ID: ', os.environ['JOB_ID'])
print('RANK_TABLE_FILE: ', os.environ['RANK_TABLE_FILE'])
print('RANK_SIZE: ', os.environ['RANK_SIZE'])
print('ASCEND_DEVICE_ID: ', os.environ['ASCEND_DEVICE_ID'])
print('DEVICE_ID: ', os.environ['DEVICE_ID'])
print('RANK_ID: ', os.environ['RANK_ID'])
print('------')

context.set_context(device_target="Ascend")
x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = Tensor(np.ones([1,3,3,4]).astype(np.float32))

print(ops.add(x, y))

Ascend的启动脚本文件

  • run_ascend.py
    import sys
    import os
    
    from common import RunAscendLog
    from common import RankTableEnv
    
    from rank_table import RankTable, RankTableTemplate1, RankTableTemplate2
    
    from manager import FMKManager
    
    if __name__ == '__main__':
        log = RunAscendLog.setup_run_ascend_logger()
    
        if len(sys.argv) <= 1:
            log.error('there are not enough args')
            sys.exit(1)
    
        train_command = sys.argv[1:]
        log.info('training command')
        log.info(train_command)
    
        if os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1) is not None:
            # new format rank table file
            rank_table_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1)
            RankTable.wait_for_available(rank_table_path)
            rank_table = RankTableTemplate1(rank_table_path)
        else:
            # old format rank table file
            rank_table_path_origin = RankTableEnv.get_rank_table_template2_file_path()
            RankTable.wait_for_available(rank_table_path_origin)
            rank_table = RankTableTemplate2(rank_table_path_origin)
    
        if rank_table.get_device_num() >= 1:
            log.info('set rank table %s env to %s' % (RankTableEnv.RANK_TABLE_FILE, rank_table.get_rank_table_path()))
            RankTableEnv.set_rank_table_env(rank_table.get_rank_table_path())
        else:
            log.info('device num < 1, unset rank table %s env' % RankTableEnv.RANK_TABLE_FILE)
            RankTableEnv.unset_rank_table_env()
    
        instance = rank_table.get_current_instance()
        server = rank_table.get_server(instance.server_id)
        current_instance = RankTable.convert_server_to_instance(server)
    
        fmk_manager = FMKManager(current_instance)
        fmk_manager.run(rank_table.get_device_num(), train_command)
        return_code = fmk_manager.monitor()
    
        fmk_manager.destroy()
    
        sys.exit(return_code)
    
  • common.py
    import logging
    import os
    
    logo = 'Training'
    
    
    # Rank Table Constants
    class RankTableEnv:
        RANK_TABLE_FILE = 'RANK_TABLE_FILE'
    
        RANK_TABLE_FILE_V1 = 'RANK_TABLE_FILE_V_1_0'
    
        HCCL_CONNECT_TIMEOUT = 'HCCL_CONNECT_TIMEOUT'
    
        # jobstart_hccl.json is provided by the volcano controller of Cloud-Container-Engine(CCE)
        HCCL_JSON_FILE_NAME = 'jobstart_hccl.json'
    
        RANK_TABLE_FILE_DEFAULT_VALUE = '/user/config/%s' % HCCL_JSON_FILE_NAME
    
        @staticmethod
        def get_rank_table_template1_file_dir():
            parent_dir = os.environ[ModelArts.MA_MOUNT_PATH_ENV]
            return os.path.join(parent_dir, 'rank_table')
    
        @staticmethod
        def get_rank_table_template2_file_path():
            rank_table_file_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE)
            if rank_table_file_path is None:
                return RankTableEnv.RANK_TABLE_FILE_DEFAULT_VALUE
    
            return os.path.join(os.path.normpath(rank_table_file_path), RankTableEnv.HCCL_JSON_FILE_NAME)
    
        @staticmethod
        def set_rank_table_env(path):
            os.environ[RankTableEnv.RANK_TABLE_FILE] = path
    
        @staticmethod
        def unset_rank_table_env():
            del os.environ[RankTableEnv.RANK_TABLE_FILE]
    
    
    class ModelArts:
        MA_MOUNT_PATH_ENV = 'MA_MOUNT_PATH'
        MA_CURRENT_INSTANCE_NAME_ENV = 'MA_CURRENT_INSTANCE_NAME'
        MA_VJ_NAME = 'MA_VJ_NAME'
    
        MA_CURRENT_HOST_IP = 'MA_CURRENT_HOST_IP'
    
        CACHE_DIR = '/cache'
    
        TMP_LOG_DIR = '/tmp/log/'
    
        FMK_WORKSPACE = 'workspace'
    
        @staticmethod
        def get_current_instance_name():
            return os.environ[ModelArts.MA_CURRENT_INSTANCE_NAME_ENV]
    
        @staticmethod
        def get_current_host_ip():
            return os.environ.get(ModelArts.MA_CURRENT_HOST_IP)
    
        @staticmethod
        def get_job_id():
            ma_vj_name = os.environ[ModelArts.MA_VJ_NAME]
            return ma_vj_name.replace('ma-job', 'modelarts-job', 1)
    
        @staticmethod
        def get_parent_working_dir():
            if ModelArts.MA_MOUNT_PATH_ENV in os.environ:
                return os.path.join(os.environ.get(ModelArts.MA_MOUNT_PATH_ENV), ModelArts.FMK_WORKSPACE)
    
            return ModelArts.CACHE_DIR
    
    
    class RunAscendLog:
    
        @staticmethod
        def setup_run_ascend_logger():
            name = logo
            formatter = logging.Formatter(fmt='[run ascend] %(asctime)s - %(levelname)s - %(message)s')
    
            handler = logging.StreamHandler()
            handler.setFormatter(formatter)
    
            logger = logging.getLogger(name)
            logger.setLevel(logging.INFO)
            logger.addHandler(handler)
            logger.propagate = False
            return logger
    
        @staticmethod
        def get_run_ascend_logger():
            return logging.getLogger(logo)
    
  • rank_table.py
    import json
    import time
    import os
    
    from common import ModelArts
    from common import RunAscendLog
    from common import RankTableEnv
    
    log = RunAscendLog.get_run_ascend_logger()
    
    
    class Device:
        def __init__(self, device_id, device_ip, rank_id):
            self.device_id = device_id
            self.device_ip = device_ip
            self.rank_id = rank_id
    
    
    class Instance:
        def __init__(self, pod_name, server_id, devices):
            self.pod_name = pod_name
            self.server_id = server_id
            self.devices = self.parse_devices(devices)
    
        @staticmethod
        def parse_devices(devices):
            if devices is None:
                return []
            device_object_list = []
            for device in devices:
                device_object_list.append(Device(device['device_id'], device['device_ip'], ''))
    
            return device_object_list
    
        def set_devices(self, devices):
            self.devices = devices
    
    
    class Group:
        def __init__(self, group_name, device_count, instance_count, instance_list):
            self.group_name = group_name
            self.device_count = int(device_count)
            self.instance_count = int(instance_count)
            self.instance_list = self.parse_instance_list(instance_list)
    
        @staticmethod
        def parse_instance_list(instance_list):
            instance_object_list = []
            for instance in instance_list:
                instance_object_list.append(
                    Instance(instance['pod_name'], instance['server_id'], instance['devices']))
    
            return instance_object_list
    
    
    class RankTable:
        STATUS_FIELD = 'status'
        COMPLETED_STATUS = 'completed'
    
        def __init__(self):
            self.rank_table_path = ""
            self.rank_table = {}
    
        @staticmethod
        def read_from_file(file_path):
            with open(file_path) as json_file:
                return json.load(json_file)
    
        @staticmethod
        def wait_for_available(rank_table_file, period=1):
            log.info('Wait for Rank table file at %s ready' % rank_table_file)
            complete_flag = False
            while not complete_flag:
                with open(rank_table_file) as json_file:
                    data = json.load(json_file)
                    if data[RankTable.STATUS_FIELD] == RankTable.COMPLETED_STATUS:
                        log.info('Rank table file is ready for read')
                        log.info('\n' + json.dumps(data, indent=4))
                        return True
    
                time.sleep(period)
    
            return False
    
        @staticmethod
        def convert_server_to_instance(server):
            device_list = []
            for device in server['device']:
                device_list.append(
                    Device(device_id=device['device_id'], device_ip=device['device_ip'], rank_id=device['rank_id']))
    
            ins = Instance(pod_name='', server_id=server['server_id'], devices=[])
            ins.set_devices(device_list)
            return ins
    
        def get_rank_table_path(self):
            return self.rank_table_path
    
        def get_server(self, server_id):
            for server in self.rank_table['server_list']:
                if server['server_id'] == server_id:
                    log.info('Current server')
                    log.info('\n' + json.dumps(server, indent=4))
                    return server
    
            log.error('server [%s] is not found' % server_id)
            return None
    
    
    class RankTableTemplate2(RankTable):
    
        def __init__(self, rank_table_template2_path):
            super().__init__()
    
            json_data = self.read_from_file(file_path=rank_table_template2_path)
    
            self.status = json_data[RankTableTemplate2.STATUS_FIELD]
            if self.status != RankTableTemplate2.COMPLETED_STATUS:
                return
    
            # sorted instance list by the index of instance
            # assert there is only one group
            json_data["group_list"][0]["instance_list"] = sorted(json_data["group_list"][0]["instance_list"],
                                                                 key=RankTableTemplate2.get_index)
    
            self.group_count = int(json_data['group_count'])
            self.group_list = self.parse_group_list(json_data['group_list'])
    
            self.rank_table_path, self.rank_table = self.convert_template2_to_template1_format_file()
    
        @staticmethod
        def parse_group_list(group_list):
            group_object_list = []
            for group in group_list:
                group_object_list.append(
                    Group(group['group_name'], group['device_count'], group['instance_count'], group['instance_list']))
    
            return group_object_list
    
        @staticmethod
        def get_index(instance):
            # pod_name example: job94dc1dbf-job-bj4-yolov4-15
            pod_name = instance["pod_name"]
            return int(pod_name[pod_name.rfind("-") + 1:])
    
        def get_current_instance(self):
            """
            get instance by pod name
            specially, return the first instance when the pod name is None
            :return:
            """
            pod_name = ModelArts.get_current_instance_name()
            if pod_name is None:
                if len(self.group_list) > 0:
                    if len(self.group_list[0].instance_list) > 0:
                        return self.group_list[0].instance_list[0]
    
                return None
    
            for group in self.group_list:
                for instance in group.instance_list:
                    if instance.pod_name == pod_name:
                        return instance
            return None
    
        def convert_template2_to_template1_format_file(self):
            rank_table_template1_file = {
                'status': 'completed',
                'version': '1.0',
                'server_count': '0',
                'server_list': []
            }
    
            logic_index = 0
            server_map = {}
            # collect all devices in all groups
            for group in self.group_list:
                if group.device_count == 0:
                    continue
                for instance in group.instance_list:
                    if instance.server_id not in server_map:
                        server_map[instance.server_id] = []
    
                    for device in instance.devices:
                        template1_device = {
                            'device_id': device.device_id,
                            'device_ip': device.device_ip,
                            'rank_id': str(logic_index)
                        }
                        logic_index += 1
                        server_map[instance.server_id].append(template1_device)
    
            server_count = 0
            for server_id in server_map:
                rank_table_template1_file['server_list'].append({
                    'server_id': server_id,
                    'device': server_map[server_id]
                })
                server_count += 1
    
            rank_table_template1_file['server_count'] = str(server_count)
    
            log.info('Rank table file (Template1)')
            log.info('\n' + json.dumps(rank_table_template1_file, indent=4))
    
            if not os.path.exists(RankTableEnv.get_rank_table_template1_file_dir()):
                os.makedirs(RankTableEnv.get_rank_table_template1_file_dir())
    
            path = os.path.join(RankTableEnv.get_rank_table_template1_file_dir(), RankTableEnv.HCCL_JSON_FILE_NAME)
            with open(path, 'w') as f:
                f.write(json.dumps(rank_table_template1_file))
                log.info('Rank table file (Template1) is generated at %s', path)
    
            return path, rank_table_template1_file
    
        def get_device_num(self):
            total_device_num = 0
            for group in self.group_list:
                total_device_num += group.device_count
            return total_device_num
    
    
    class RankTableTemplate1(RankTable):
        def __init__(self, rank_table_template1_path):
            super().__init__()
            self.rank_table_path = rank_table_template1_path
            self.rank_table = self.read_from_file(file_path=rank_table_template1_path)
    
        def get_current_instance(self):
            current_server = None
            server_list = self.rank_table['server_list']
            if len(server_list) == 1:
                current_server = server_list[0]
            elif len(server_list) > 1:
                host_ip = ModelArts.get_current_host_ip()
                if host_ip is not None:
                    for server in server_list:
                        if server['server_id'] == host_ip:
                            current_server = server
                            break
                else:
                    current_server = server_list[0]
    
            if current_server is None:
                log.error('server is not found')
                return None
            return self.convert_server_to_instance(current_server)
    
        def get_device_num(self):
            server_list = self.rank_table['server_list']
            device_num = 0
            for server in server_list:
                device_num += len(server['device'])
            return device_num
    
  • manager.py
    import time
    import os
    import os.path
    import signal
    
    from common import RunAscendLog
    from fmk import FMK
    
    
    log = RunAscendLog.get_run_ascend_logger()
    
    
    class FMKManager:
        # max destroy time: ~20 (15 + 5)
        # ~ 15 (1 + 2 + 4 + 8)
        MAX_TEST_PROC_CNT = 4
    
        def __init__(self, instance):
            self.instance = instance
            self.fmk = []
            self.fmk_processes = []
            self.get_sigterm = False
            self.max_test_proc_cnt = FMKManager.MAX_TEST_PROC_CNT
    
        # break the monitor and destroy processes when get terminate signal
        def term_handle(func):
            def receive_term(signum, stack):
                log.info('Received terminate signal %d, try to destroyed all processes' % signum)
                stack.f_locals['self'].get_sigterm = True
    
            def handle_func(self, *args, **kwargs):
                origin_handle = signal.getsignal(signal.SIGTERM)
                signal.signal(signal.SIGTERM, receive_term)
                res = func(self, *args, **kwargs)
                signal.signal(signal.SIGTERM, origin_handle)
                return res
    
            return handle_func
    
        def run(self, rank_size, command):
            for index, device in enumerate(self.instance.devices):
                fmk_instance = FMK(index, device)
                self.fmk.append(fmk_instance)
    
                self.fmk_processes.append(fmk_instance.run(rank_size, command))
    
        @term_handle
        def monitor(self, period=1):
            # busy waiting for all fmk processes exit by zero
            # or there is one process exit by non-zero
    
            fmk_cnt = len(self.fmk_processes)
            zero_ret_cnt = 0
            while zero_ret_cnt != fmk_cnt:
                zero_ret_cnt = 0
                for index in range(fmk_cnt):
                    fmk = self.fmk[index]
                    fmk_process = self.fmk_processes[index]
                    if fmk_process.poll() is not None:
                        if fmk_process.returncode != 0:
                            log.error('proc-rank-%s-device-%s (pid: %d) has exited with non-zero code: %d'
                                      % (fmk.rank_id, fmk.device_id, fmk_process.pid, fmk_process.returncode))
                            return fmk_process.returncode
    
                        zero_ret_cnt += 1
                if self.get_sigterm:
                    break
                time.sleep(period)
    
            return 0
    
        def destroy(self, base_period=1):
            log.info('Begin destroy training processes')
            self.send_sigterm_to_fmk_process()
            self.wait_fmk_process_end(base_period)
            log.info('End destroy training processes')
    
        def send_sigterm_to_fmk_process(self):
            # send SIGTERM to fmk processes (and process group)
            for r_index in range(len(self.fmk_processes) - 1, -1, -1):
                fmk = self.fmk[r_index]
                fmk_process = self.fmk_processes[r_index]
                if fmk_process.poll() is not None:
                    log.info('proc-rank-%s-device-%s (pid: %d) has exited before receiving the term signal',
                             fmk.rank_id, fmk.device_id, fmk_process.pid)
                    del self.fmk_processes[r_index]
                    del self.fmk[r_index]
    
                try:
                    os.killpg(fmk_process.pid, signal.SIGTERM)
                except ProcessLookupError:
                    pass
    
        def wait_fmk_process_end(self, base_period):
            test_cnt = 0
            period = base_period
            while len(self.fmk_processes) > 0 and test_cnt < self.max_test_proc_cnt:
                for r_index in range(len(self.fmk_processes) - 1, -1, -1):
                    fmk = self.fmk[r_index]
                    fmk_process = self.fmk_processes[r_index]
                    if fmk_process.poll() is not None:
                        log.info('proc-rank-%s-device-%s (pid: %d) has exited',
                                 fmk.rank_id, fmk.device_id, fmk_process.pid)
                        del self.fmk_processes[r_index]
                        del self.fmk[r_index]
                if not self.fmk_processes:
                    break
    
                time.sleep(period)
                period *= 2
                test_cnt += 1
    
            if len(self.fmk_processes) > 0:
                for r_index in range(len(self.fmk_processes) - 1, -1, -1):
                    fmk = self.fmk[r_index]
                    fmk_process = self.fmk_processes[r_index]
                    if fmk_process.poll() is None:
                        log.warn('proc-rank-%s-device-%s (pid: %d) has not exited within the max waiting time, '
                                 'send kill signal',
                                 fmk.rank_id, fmk.device_id, fmk_process.pid)
                        os.killpg(fmk_process.pid, signal.SIGKILL)
    
  • fmk.py
    import os
    import subprocess
    import pathlib
    from contextlib import contextmanager
    
    from common import RunAscendLog
    from common import RankTableEnv
    from common import ModelArts
    
    log = RunAscendLog.get_run_ascend_logger()
    
    
    class FMK:
    
        def __init__(self, index, device):
            self.job_id = ModelArts.get_job_id()
            self.rank_id = device.rank_id
            self.device_id = str(index)
    
        def gen_env_for_fmk(self, rank_size):
            current_envs = os.environ.copy()
    
            current_envs['JOB_ID'] = self.job_id
    
            current_envs['ASCEND_DEVICE_ID'] = self.device_id
            current_envs['DEVICE_ID'] = self.device_id
    
            current_envs['RANK_ID'] = self.rank_id
            current_envs['RANK_SIZE'] = str(rank_size)
    
            FMK.set_env_if_not_exist(current_envs, RankTableEnv.HCCL_CONNECT_TIMEOUT, str(1800))
    
            log_dir = FMK.get_log_dir()
            process_log_path = os.path.join(log_dir, self.job_id, 'ascend', 'process_log', 'rank_' + self.rank_id)
            FMK.set_env_if_not_exist(current_envs, 'ASCEND_PROCESS_LOG_PATH', process_log_path)
            pathlib.Path(current_envs['ASCEND_PROCESS_LOG_PATH']).mkdir(parents=True, exist_ok=True)
    
            return current_envs
    
        @contextmanager
        def switch_directory(self, directory):
            owd = os.getcwd()
            try:
                os.chdir(directory)
                yield directory
            finally:
                os.chdir(owd)
    
        def get_working_dir(self):
            fmk_workspace_prefix = ModelArts.get_parent_working_dir()
            return os.path.join(os.path.normpath(fmk_workspace_prefix), 'device%s' % self.device_id)
    
        @staticmethod
        def get_log_dir():
            parent_path = os.getenv(ModelArts.MA_MOUNT_PATH_ENV)
            if parent_path:
                log_path = os.path.join(parent_path, 'log')
                if os.path.exists(log_path):
                    return log_path
    
            return ModelArts.TMP_LOG_DIR
    
        @staticmethod
        def set_env_if_not_exist(envs, env_name, env_value):
            if env_name in os.environ:
                log.info('env already exists. env_name: %s, env_value: %s ' % (env_name, env_value))
                return
    
            envs[env_name] = env_value
    
        def run(self, rank_size, command):
            envs = self.gen_env_for_fmk(rank_size)
            log.info('bootstrap proc-rank-%s-device-%s' % (self.rank_id, self.device_id))
    
            log_dir = FMK.get_log_dir()
            if not os.path.exists(log_dir):
                os.makedirs(log_dir)
    
            log_file = '%s-proc-rank-%s-device-%s.txt' % (self.job_id, self.rank_id, self.device_id)
            log_file_path = os.path.join(log_dir, log_file)
    
            working_dir = self.get_working_dir()
            if not os.path.exists(working_dir):
                os.makedirs(working_dir)
    
            with self.switch_directory(working_dir):
                # os.setsid: change the process(forked) group id to itself
                training_proc = subprocess.Popen(command, env=envs, preexec_fn=os.setsid,
                                                 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    
                log.info('proc-rank-%s-device-%s (pid: %d)', self.rank_id, self.device_id, training_proc.pid)
    
                # https://docs.python.org/3/library/subprocess.html#subprocess.Popen.wait
                subprocess.Popen(['tee', log_file_path], stdin=training_proc.stdout)
    
                return training_proc
    

相关文档