SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905)
Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能的过程。
本文档主要介绍如何利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL Finetune训练。
资源规格要求
推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。
名称 |
版本 |
---|---|
CANN |
cann_8.0.rc2 |
PyTorch |
pytorch_2.1.0 |
获取软件和镜像
分类 |
名称 |
获取路径 |
---|---|---|
插件代码包 |
AscendCloud-3rdAIGC-6.3.905-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 |
获取路径:Support-E 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 |
基础镜像包 |
swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240528150158-b521cc0 |
SWR上拉取 |
约束限制
- 本文档适配昇腾云ModelArts 6.3.905版本,请参考表2获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。
- 训练资源需要使用单机8卡。
- 确保容器可以访问公网。
Step1 检查环境
- 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。
购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。
- SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。
- 检查是否安装docker。
docker -v #检查docker是否安装
如尚未安装,运行以下命令安装docker。
yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64
- 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。
sysctl -p | grep net.ipv4.ip_forward
如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
Step2 下载代码包、依赖模型包和数据集
- 下载stable-diffusion-xl-base-1.0模型包并上传到宿主机上,官网下载地址:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main
- 下载vae-fp16-fix模型包并上传到宿主机上,官网下载地址:https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/tree/main
- 下载开源数据集并上传到宿主机上,官网下载地址:https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/tree/main。用户也可以使用自己的数据集。
- 下载SDXL插件代码包AscendCloud-3rdAIGC-6.3.905-xxx.zip文件,获取路径参见获取软件和镜像。本案例使用的是AscendCloud-3rdAIGC-6.3.905-xxx.zip文件中的ascendcloud-aigc-poc-sdxl-finetune.tar.gz代码包。解压后上传到宿主机上。
依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。
[root@devserver-ei-cto-office-ae06cae7-tmp1216 docker_build]# ll total 192 -rw------- 1 root root 108286 May 6 16:56 attention_processor.py -rw------- 1 root root 430 May 8 09:31 config.yaml drwx------ 3 root root 4096 May 7 10:50 datasets -rw------- 1 root root 1356 May 8 16:30 diffusers_finetune_train.sh -rw------- 1 root root 1468 May 8 16:49 Dockerfile #需要用户参考Step3构建镜像步骤写Dockerfile文件 drwx------ 10 root root 4096 Apr 30 15:18 stable-diffusion-xl-base-1.0 -rw------- 1 root root 58048 May 8 17:48 train_text_to_image_sdxl-0212.py drwx------ 2 root root 4096 Apr 30 15:17 vae-fp16-fix
Step3 构建镜像
基于官方提供的基础镜像构建自定义镜像sdxl-train:0.0.1。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。
FROM {image_url} RUN mkdir /home/ma-user/sdxl-train && mkdir /home/ma-user/sdxl-train/user-job-dir && mkdir /home/ma-user/sdxl-train/user-job-dir/code COPY --chown=ma-user:ma-group diffusers_finetune_train.sh /home/ma-user/sdxl-train/user-job-dir/code/diffusers_finetune_train.sh COPY --chown=ma-user:ma-group train_text_to_image_sdxl-0212.py /home/ma-user/sdxl-train/user-job-dir/code/train_text_to_image_sdxl-0212.py COPY --chown=ma-user:ma-group config.yaml /home/ma-user/sdxl-train/user-job-dir/code/config.yaml COPY --chown=ma-user:ma-group stable-diffusion-xl-base-1.0 /home/ma-user/sdxl-train/stable-diffusion-xl-base-1.0 COPY --chown=ma-user:ma-group vae-fp16-fix /home/ma-user/sdxl-train/vae-fp16-fix COPY --chown=ma-user:ma-group datasets /home/ma-user/sdxl-train/datasets RUN pip install accelerate datasets transformers diffusers RUN source /etc/bashrc && pip install deepspeed COPY --chown=ma-user:ma-group attention_processor.py /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/diffusers/models/attention_processor.py
构建自定义镜像sdxl-train:0.0.1。
docker build -t sdxl-train:0.0.1 .
Step4 启动镜像
docker run -itd --name sdxl-train -v /sys/fs/cgroup:/sys/fs/cgroup:ro -v /etc/localtime:/etc/localtime -v /usr/local/Ascend/driver:/usr/local/Ascend/driver -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi --shm-size 60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2 --device=/dev/davinci3 --device=/dev/davinci4 --device=/dev/davinci5 --device=/dev/davinci6 --device=/dev/davinci7 --security-opt seccomp=unconfined --network=bridge sdxl-train:0.0.1 bash
参数说明:
- --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。
- driver及npu-smi需同时挂载至容器。
- 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。
docker exec -it sdxl-train bash
Step5 修改算法脚本
进入容器后,修改启动脚本文件。
vi /home/ma-user/sdxl-train/user-job-dir/code/diffusers_finetune_train.sh
在第2行增加export MA_NUM_HOSTS=1 即可,如:
#!/bin/bash export MA_NUM_HOSTS=1 if [[ $MA_NUM_HOSTS == 1 ]]; then
Step6 启动训练服务
cd /home/ma-user/sdxl-train/user-job-dir/code sh diffusers_finetune_train.sh
训练执行脚本中配置了保存checkpoint的频率,每500steps保存一次,如果磁盘空间较小,这个值可以改大到5000,避免磁盘空间写满,导致训练失败终止。
checkpoint保存频率的修改命令如下:
--checkpointing_steps=5000
训练执行成功如下图所示。