- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
ModelArts用户指南(Standard)
- ModelArts Standard使用流程
- ModelArts Standard准备工作
- ModelArts Standard资源管理
- 使用自动学习实现零代码AI开发
- 使用Workflow实现低代码AI开发
- 使用Notebook进行AI开发调试
- 数据准备与处理
- 使用ModelArts Standard训练模型
- 使用ModelArts Standard部署模型并推理预测
- 制作自定义镜像用于ModelArts Standard
- ModelArts Standard资源监控
- 使用CTS审计ModelArts服务
- ModelArts用户指南(Studio)
- ModelArts用户指南(Lite Server)
- ModelArts用户指南(Lite Cluster)
- ModelArts用户指南(AI Gallery)
-
最佳实践
- ModelArts最佳实践案例列表
- 昇腾能力应用地图
- DeepSeek系列模型推理
-
LLM大语言模型训练推理
- 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类
- 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
-
MLLM多模态模型训练推理
- Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909)
- MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912)
- MiniCPM-V2.0推理及LoRA微调基于Lite Server适配PyTorch NPU指导(6.3.910)
- InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912)
- LLaVA-NeXT基于Lite Server适配PyTorch NPU训练微调指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU预训练指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912)
- LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- moondream2基于Lite Server适配PyTorch NPU推理指导
-
文生图模型训练推理
- FlUX.1基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911)
- Hunyuan-DiT基于Lite Server部署适配PyTorch NPU推理指导(6.3.909)
- SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912)
- SD3基于Lite Server适配PyTorch NPU的训练指导(6.3.912)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- SD1.5&SDXL Diffusers框架基于Lite Server适配PyTorch NPU训练指导(6.3.908)
- SD1.5&SDXL Kohya框架基于DevServer适配PyTorch NPU训练指导(6.3.908)
- SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- SDXL&SD1.5 ComfyUI基于Lite Cluster适配NPU推理指导(6.3.906)
- SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的LoRA训练指导(6.3.905)
- SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904)
- Open-Clip基于Lite Server适配PyTorch NPU训练指导
- AIGC工具tailor使用指导
- 文生视频模型训练推理
- 数字人模型训练推理
- 内容审核模型训练推理
- GPU业务迁移至昇腾训练推理
- Standard权限管理
- Standard自动学习
- Standard开发环境
- Standard模型训练
- Standard推理部署
- 历史待下线案例
-
API参考
- 使用前必读
- API概览
- 如何调用API
-
Workflow工作流管理
- 获取Workflow工作流列表
- 新建Workflow工作流
- 删除Workflow工作流
- 查询Workflow工作流
- 修改Workflow工作流
- 总览Workflow工作流
- 查询Workflow待办事项
- 在线服务鉴权
- 创建在线服务包
- 获取Execution列表
- 新建Workflow Execution
- 删除Workflow Execution
- 查询Workflow Execution
- 更新Workflow Execution
- 管理Workflow Execution
- 管理Workflow StepExecution
- 获取Workflow工作流节点度量信息
- 新建消息订阅Subscription
- 删除消息订阅Subscription
- 查询消息订阅Subscription详情
- 更新消息订阅Subscription
- 创建工作流定时调度
- 查询工作流定时调度详情
- 删除工作流定时调度信息
- 更新工作流定时调度信息
-
开发环境管理
- 创建Notebook实例
- 查询Notebook实例列表
- 查询所有Notebook实例列表
- 查询Notebook实例详情
- 更新Notebook实例
- 删除Notebook实例
- 通过运行的实例保存成容器镜像
- 查询Notebook支持的有效规格列表
- 查询Notebook支持的可切换规格列表
- 查询运行中的Notebook可用时长
- Notebook时长续约
- 启动Notebook实例
- 停止Notebook实例
- 获取动态挂载OBS实例信息列表
- 动态挂载OBS
- 获取动态挂载OBS实例详情
- 动态卸载OBS
- 添加资源标签
- 删除资源标签
- 查询Notebook资源类型下的标签
- 查询支持的镜像列表
- 注册自定义镜像
- 查询用户镜像组列表
- 查询镜像详情
- 删除镜像
-
训练管理
- 创建算法
- 查询算法列表
- 查询算法详情
- 更新算法
- 删除算法
- 获取支持的超参搜索算法
- 创建训练实验
- 创建训练作业
- 查询训练作业详情
- 更新训练作业描述
- 删除训练作业
- 终止训练作业
- 查询训练作业指定任务的日志(预览)
- 查询训练作业指定任务的日志(OBS链接)
- 查询训练作业指定任务的运行指标
- 查询训练作业列表
- 查询超参搜索所有trial的结果
- 查询超参搜索某个trial的结果
- 获取超参敏感度分析结果
- 获取某个超参敏感度分析图像的路径
- 提前终止自动化搜索作业的某个trial
- 获取自动化搜索作业yaml模板的信息
- 获取自动化搜索作业yaml模板的内容
- 创建训练作业标签
- 删除训练作业标签
- 查询训练作业标签
- 获取训练作业事件列表
- 创建训练作业镜像保存任务
- 查询训练作业镜像保存任务
- 获取训练作业支持的公共规格
- 获取训练作业支持的AI预置框架
- AI应用管理
- APP认证管理
- 服务管理
- 资源管理
- DevServer管理
- 授权管理
- 工作空间管理
- 配额管理
- 资源标签管理
- 节点池管理
- 应用示例
- 权限策略和授权项
- 公共参数
-
历史API
-
数据管理(旧版)
- 查询数据集列表
- 创建数据集
- 查询数据集详情
- 更新数据集
- 删除数据集
- 查询数据集的统计信息
- 查询数据集监控数据
- 查询数据集的版本列表
- 创建数据集标注版本
- 查询数据集版本详情
- 删除数据集标注版本
- 查询样本列表
- 批量添加样本
- 批量删除样本
- 查询单个样本信息
- 获取样本搜索条件
- 分页查询团队标注任务下的样本列表
- 查询团队标注的样本信息
- 查询数据集标签列表
- 创建数据集标签
- 批量修改标签
- 批量删除标签
- 按标签名称更新单个标签
- 按标签名称删除标签及仅包含此标签的文件
- 批量更新样本标签
- 查询数据集的团队标注任务列表
- 创建团队标注任务
- 查询团队标注任务详情
- 启动团队标注任务
- 更新团队标注任务
- 删除团队标注任务
- 创建团队标注验收任务
- 查询团队标注验收任务报告
- 更新团队标注验收任务状态
- 查询团队标注任务统计信息
- 查询团队标注任务成员的进度信息
- 团队成员查询团队标注任务列表
- 提交验收任务的样本评审意见
- 团队标注审核
- 批量更新团队标注样本的标签
- 查询标注团队列表
- 创建标注团队
- 查询标注团队详情
- 更新标注团队
- 删除标注团队
- 向标注成员发送邮件
- 查询所有团队的标注成员列表
- 查询标注团队的成员列表
- 创建标注团队的成员
- 批量删除标注团队成员
- 查询标注团队成员详情
- 更新标注团队成员
- 删除标注团队成员
- 查询数据集导入任务列表
- 创建导入任务
- 查询数据集导入任务的详情
- 查询数据集导出任务列表
- 创建数据集导出任务
- 查询数据集导出任务的状态
- 同步数据集
- 查询数据集同步任务的状态
- 查询智能标注的样本列表
- 查询单个智能标注样本的信息
- 分页查询智能任务列表
- 启动智能任务
- 获取智能任务的信息
- 停止智能任务
- 查询处理任务列表
- 创建处理任务
- 查询数据处理的算法类别
- 查询处理任务详情
- 更新处理任务
- 删除处理任务
- 查询数据处理任务的版本列表
- 创建数据处理任务版本
- 查询数据处理任务的版本详情
- 删除数据处理任务的版本
- 查询数据处理任务版本的结果展示
- 停止数据处理任务的版本
- 开发环境(旧版)
- 训练管理(旧版)
-
数据管理(旧版)
- SDK参考
- 场景代码示例
-
故障排除
- 通用问题
- 自动学习
-
开发环境
- 环境配置故障
- 实例故障
- 代码运行故障
- JupyterLab插件故障
-
VS Code连接开发环境失败故障处理
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”如何解决?
- 报错“Connection permission denied (publickey)”如何解决
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
- VSCode远程连接时卡顿,或Python调试插件无法使用如何处理?
-
自定义镜像故障
- Notebook自定义镜像故障基础排查
- 镜像保存时报错“there are processes in 'D' status, please check process status using 'ps -aux' and kill all the 'D' status processes”或“Buildimge,False,Error response from daemon,Cannot pause container xxx”如何解决?
- 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决?
- 保存镜像时报错“too many layers in your image”如何解决?
- 镜像保存时报错“The container size (xG) is greater than the threshold (25G)”如何解决?
- 镜像保存时报错“BuildImage,True,Commit successfully|PushImage,False,Task is running.”
- 使用自定义镜像创建Notebook后打开没有kernel
- 用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决?
- 用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found)
- 用户使用torch报错Unexpected error from cudaGetDeviceCount
- 其他故障
-
训练作业
- OBS操作相关故障
-
云上迁移适配故障
- 无法导入模块
- 训练作业日志中提示“No module named .*”
- 如何安装第三方包,安装报错的处理方法
- 下载代码目录失败
- 训练作业日志中提示“No such file or directory”
- 训练过程中无法找到so文件
- ModelArts训练作业无法解析参数,日志报错
- 训练输出路径被其他作业使用
- PyTorch1.0引擎提示“RuntimeError: std:exception”
- MindSpore日志提示“ retCode=0x91, [the model stream execute failed]”
- 使用moxing适配OBS路径,pandas读取文件报错
- 日志提示“Please upgrade numpy to >= xxx to use this pandas version”
- 重装的包与镜像装CUDA版本不匹配
- 创建训练作业提示错误码ModelArts.2763
- 训练作业日志中提示 “AttributeError: module '***' has no attribute '***'”
- 系统容器异常退出
- 硬盘限制故障
- 外网访问限制
- 权限问题
- GPU相关问题
-
业务代码问题
- 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields”
- 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0”
- 训练作业失败,返回错误码139
- 训练作业失败,如何使用开发环境调试训练代码?
- 日志提示“ '(slice(0, 13184, None), slice(None, None, None))' is an invalid key”
- 日志报错“DataFrame.dtypes for data must be int, float or bool”
- 日志提示“CUDNN_STATUS_NOT_SUPPORTED. ”
- 日志提示“Out of bounds nanosecond timestamp”
- 日志提示“Unexpected keyword argument passed to optimizer”
- 日志提示“no socket interface found”
- 日志提示“Runtimeerror: Dataloader worker (pid 46212 ) is killed by signal: Killed BP”
- 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”
- 日志提示“No module name 'unidecode'”
- 分布式Tensorflow无法使用“tf.variable”
- MXNet创建kvstore时程序被阻塞,无报错
- 日志出现ECC错误,导致训练作业失败
- 超过最大递归深度导致训练作业失败
- 使用预置算法训练时,训练失败,报“bndbox”错误
- 训练作业进程异常退出
- 训练作业进程被kill
- 预置算法运行故障
- 训练作业运行失败
- 专属资源池创建训练作业
- 训练作业性能问题
- Ascend相关问题
-
推理部署
-
模型管理
- 创建模型失败,如何定位和处理问题?
- 导入模型提示该账号受限或者没有操作权限
- 用户创建模型时构建镜像或导入文件失败
- 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的?
- 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志
- 通过OBS创建模型时,构建日志中提示pip下载包失败
- 通过自定义镜像创建模型失败
- 导入模型后部署服务,提示磁盘不足
- 创建模型成功后,部署服务报错,如何排查代码问题
- 自定义镜像导入配置运行时依赖无效
- 通过API接口查询模型详情,model_name返回值出现乱码
- 导入模型提示模型或镜像大小超过限制
- 导入模型提示单个模型文件超过5G限制
- 订阅的模型一直处于等待同步状态
- 创建模型失败,提示模型镜像构建任务超时,没有构建日志
-
服务部署
- 自定义镜像模型部署为在线服务时出现异常
- 部署的在线服务状态为告警
- 服务启动失败
- 服务部署、启动、升级和修改时,拉取镜像失败如何处理?
- 服务部署、启动、升级和修改时,镜像不断重启如何处理?
- 服务部署、启动、升级和修改时,容器健康检查失败如何处理?
- 服务部署、启动、升级和修改时,资源不足如何处理?
- 模型使用CV2包部署在线服务报错
- 服务状态一直处于“部署中”
- 服务启动后,状态断断续续处于“告警中”
- 服务部署失败,报错No Module named XXX
- IEF节点边缘服务部署失败
- 批量服务输入/输出obs目录不存在或者权限不足
- 部署在线服务出现报错No CUDA runtime is found
- 使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错
- 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments
- 内存不足如何处理?
- 服务预测
-
模型管理
- MoXing
- API/SDK
- 资源池
-
Lite Server
- GPU裸金属服务器使用EulerOS内核误升级如何解决
- GPU A系列裸金属服务器无法获取显卡如何解决
- GPU裸金属服务器无法Ping通如何解决
- GPU A系列裸金属服务器RoCE带宽不足如何解决?
- GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML
- 训练速度突然下降以及执行nvidia-smi卡顿如何解决?
- GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error
- 使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed
- 华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案
- GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败
- 裸金属服务器Euler OS升级NetworkManager-config-server导致SSH链接故障解决方案
- Lite Cluster
-
常见问题
- 权限相关
- 存储相关
- Standard自动学习
- Standard Workflow
-
Standard数据准备
- 在ModelArts数据集中添加图片对图片大小有限制吗?
- 如何将本地标注的数据导入ModelArts?
- 在ModelArts中数据标注完成后,标注结果存储在哪里?
- 在ModelArts中如何将标注结果下载至本地?
- 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
- ModelArts团队标注的数据分配机制是什么?
- 如何将两个ModelArts数据集合并?
- 在ModelArts中同一个账户,图片展示角度不同是为什么?
- 在ModelArts中智能标注完成后新加入数据需要重新训练吗?
- 在ModelArts中如何将图片划分到验证集或者训练集?
- 在ModelArts中物体检测标注时能否自定义标签?
- ModelArts数据集新建的版本找不到怎么办?
- 如何切分ModelArts数据集?
- 如何删除ModelArts数据集中的图片?
-
Standard Notebook
- ModelArts的Notebook是否支持Keras引擎?
- 如何在ModelArts的Notebook中上传下载OBS文件?
- ModelArts的Notebook实例upload后,数据会上传到哪里?
- 在ModelArts中如何将Notebook A的数据复制到Notebook B中?
- 在ModelArts的Notebook中如何对OBS的文件重命名?
- 在ModelArts的Notebook中如何使用pandas库处理OBS桶中的数据?
- 在ModelArts的Notebook中,如何访问其他账号的OBS桶?
- 在ModelArts的Notebook中JupyterLab默认工作路径是什么?
- 如何查看ModelArts的Notebook使用的cuda版本?
- 在ModelArts的Notebook中如何获取本机外网IP?
- ModelArts的Notebook有代理吗?如何关闭?
- 在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel?
- 在ModelArts的Notebook中如何将git clone的py文件变为ipynb文件?
- 在ModelArts的Notebook实例重启时,数据集会丢失吗?
- 在ModelArts的Notebook的Jupyterlab可以安装插件吗?
- 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练?
- 如何在ModelArts的Notebook的CodeLab上安装依赖?
- 在ModelArts的Notebook中安装远端插件时不稳定要怎么办?
- 在ModelArts的Notebook中实例重新启动后要怎么连接?
- 在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办?
- 在ModelArts的Notebook中使用VS Code如何查看远端日志?
- 在ModelArts的Notebook中如何打开VS Code的配置文件settings.json?
- 在ModelArts的Notebook中如何设置VS Code背景色为豆沙绿?
- 在ModelArts的Notebook中如何设置VS Code远端默认安装的插件?
- 在ModelArts的VS Code中如何把本地插件安装到远端或把远端插件安装到本地?
- 在ModelArts的Notebook中,如何使用昇腾多卡进行调试?
- 在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多?
- 在ModelArts的Notebook中使用MoXing时,如何进行增量训练?
- 在ModelArts的Notebook中如何查看GPU使用情况?
- 在ModelArts的Notebook中如何在代码中打印GPU使用信息?
- 在ModelArts的Notebook中JupyterLab的目录、Terminal的文件和OBS的文件之间的关系是什么?
- 如何在ModelArts的Notebook实例中使用ModelArts数据集?
- pip介绍及常用命令
- 在ModelArts的Notebook中不同规格资源/cache目录的大小是多少?
- 资源超分对在ModelArts的Notebook实例有什么影响?
- 如何在Notebook中安装外部库?
- 在ModelArts的Notebook中,访问外网速度不稳定怎么办?
-
Standard模型训练
- 在ModelArts训练得到的模型欠拟合怎么办?
- 在ModelArts中训练好后的模型如何获取?
- 在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练?
- 在ModelArts上训练模型如何配置输入输出数据?
- 在ModelArts上如何提升训练效率并减少与OBS的交互?
- 在ModelArts中使用Moxing复制数据时如何定义路径变量?
- 在ModelArts上如何创建引用第三方依赖包的训练作业?
- 在ModelArts训练时如何安装C++的依赖库?
- 在ModelArts训练作业中如何判断文件夹是否复制完毕?
- 如何在ModelArts训练作业中加载部分训练好的参数?
- ModelArts训练时使用os.system('cd xxx')无法进入文件夹怎么办?
- 在ModelArts训练代码中,如何获取依赖文件所在的路径?
- 自如何获取ModelArts训练容器中的文件实际路径?
- ModelArts训练中不同规格资源“/cache”目录的大小是多少?
- ModelArts训练作业为什么存在/work和/ma-user两种超参目录?
- 如何查看ModelArts训练作业资源占用情况?
- 如何将在ModelArts中训练好的模型下载或迁移到其他账号?
-
Standard推理部署
- 如何将Keras的.h5格式的模型导入到ModelArts中?
- ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数?
- 在ModelArts中使用自定义镜像创建在线服务,如何修改端口?
- ModelArts平台是否支持多模型导入?
- 在ModelArts中导入模型对于镜像大小有什么限制?
- ModelArts在线服务和批量服务有什么区别?
- ModelArts在线服务和边缘服务有什么区别?
- 在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源?
- ModelArts线上训练得到的模型是否支持离线部署在本地?
- ModelArts在线服务预测请求体大小限制是多少?
- ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突?
- ModelArts在线服务预测时,如何提高预测速度?
- 在ModelArts中调整模型后,部署新版本模型能否保持原API接口不变?
- ModelArts在线服务的API接口组成规则是什么?
- ModelArts在线服务处于运行中时,如何填写request header和request body?
-
Standard镜像相关
- 不在同一个主账号下,如何使用他人的自定义镜像创建Notebook?
- 如何登录并上传镜像到SWR?
- 在Dockerfile中如何给镜像设置环境变量?
- 如何通过docker镜像启动容器?
- 如何在ModelArts的Notebook中配置Conda源?
- ModelArts的自定义镜像软件版本匹配有哪些注意事项?
- 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么?
- 如何保证自定义镜像能不因为超过35G而保存失败?
- 如何减小本地或ECS构建镜像的目的镜像的大小?
- 镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗?
- 在ModelArts镜像管理注册镜像报错ModelArts.6787怎么处理?
- 用户如何设置默认的kernel?
- Standard专属资源池
- Studio
- Edge
- API/SDK
- Lite Server
- Lite Cluster
- 历史文档待下线
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
GPT-2基于Server适配PyTorch GPU的训练推理指导
场景描述
本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。
背景信息
- Megatron-DeepSpeed
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。
Megatron-LM是一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于自然语言处理任务,如文本生成、机器翻译和对话系统等。
DeepSpeed是开源的加速深度学习训练的库。它针对大规模的模型和分布式训练进行了优化,可以显著提高训练速度和效率。DeepSpeed提供了各种技术和优化策略,包括分布式梯度下降、模型并行化、梯度累积和动态精度缩放等。它还支持优化大模型的内存使用和计算资源分配。
- GPT2
GPT2(Generative Pre-trained Transformer 2),是OpenAI组织在2018年于GPT模型的基础上发布的新预训练模型,是一个基于Transformer且非常庞大的语言模型。它在大量数据集上进行了训练,直接运行一个预训练好的GPT-2模型:给定一个预定好的起始单词或者句子,可以让它自行地随机生成后续的文本。
环境准备
在华为云ModelArts Server预购相关超强算力的GPU裸金属服务器,并选择AIGC场景通用的镜像,完成使用Megatron-DeepSpeed训练GPT2模型。本最佳实践使用以下镜像和规格:
- 镜像选择:Ubuntu 20.04 x86 64bit SDI3 for Ant8 BareMetal with RoCE and NVIDIA-525 CUDA-12.0。
- 裸金属规格选择: GP Ant8,包含8张GPU卡以及8张RoCE网卡。
关于Ant8裸金属服务器的购买,可以在华为云官网提工单至ModelArts云服务, 完成资源的申请。
步骤1 安装模型
- 安装Megatron-DeepSpeed框架。
- 使用root用户SSH的方式登录GPU裸金属服务器。具体登录方式请参见SSH密钥方式登录裸金属服务器。
- 拉取pytorch镜像,可以选择常用的镜像源进行下载。
docker pull nvcr.io/nvidia/pytorch:21.10-py3
- 启动容器。
docker run -d -t --network=host --gpus all --privileged --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --name megatron-deepspeed -v /etc/localtime:/etc/localtime -v /root/.ssh:/root/.ssh nvcr.io/nvidia/pytorch:21.10-py3
- 执行以下命令,进入容器终端。
docker exec -it megatron-deepspeed bash
- 下载Megatron-DeepSpeed框架。
git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed
说明:
若git clone失败,可以尝试先下载至本地,然后复制至服务器中,在docker cp至容器中。
- 安装Megatron-DeepSpeed框架。
cd Megatron-DeepSpeed pip install -r requirements.txt -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com pip install mpi4py -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com
- 修改测试代码,注释掉以下文件的断言所在行。
vim /workspace/Megatron-DeepSpeed/megatron/model/fused_softmax.py +191
在“assert mask is None, "Mask is silently ignored due to the use of a custom kernel"”前加“#”,即:
# assert mask is None, "Mask is silently ignored due to the use of a custom kernel"
- 数据集下载和预处理。
本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据集。
- 下载数据集。
wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
- 解压数据集。
xz -d oscar-1GB.jsonl.xz
- 预处理数据。
python3 tools/preprocess_data.py \ --input oscar-1GB.jsonl \ --output-prefix meg-gpt2 \ --vocab gpt2-vocab.json \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file gpt2-merges.txt \ --append-eod \ --workers 8
说明:
若发生如下“np.float”报错,按照报错提示修改为“float”即可。图1 预处理数据报错 - 数据预处理完成标识。
图2 数据预处理完成
- 新建data目录并移动处理好的数据。
mkdir data mv meg-gpt2* ./data mv gpt2* ./data
- 下载数据集。
步骤2 单机单卡训练
本小节使用上文的服务器环境和安装好的模型, 使用GP Ant8裸金属服务器, 完成单机单卡GPT-2 MEDIUM模型的训练。
- 创建预训练脚本文件。
- 执行以下命令,创建预训练脚本文件。
vim pretrain_gpt2.sh
- 在文件中添加以下信息。
#! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=1 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 8 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16
- 执行以下命令,创建预训练脚本文件。
- 开始训练。
本文是单机单卡训练,使用预训练脚本参数控制:
GPUS_PER_NODE=1 NNODES=1 NODE_RANK=0
- 执行以下命令,开始预训练。
nohup sh ./pretrain_gpt2.sh &
图3 开始预训练 - 实时查看训练日志,监控程序。
tail -f nohup.out
如果显示如下信息, 表示模型训练完成。
图4 模型训练完成在训练过程中观察单GPU卡的利用率,如下:
图5 GPU利用率
- 执行以下命令,开始预训练。
- 查看生成的模型checkpoint。
本示例生成的模型checkpoint路径设置在“/workspace/Megatron-DeepSpeed/checkpoints/gpt2”。
ll ./checkpoints/gpt2
图6 模型checkpoint
步骤3 单机多卡训练
和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。
- 当前选择GPU裸金属服务器是8卡, 因此需要在预训练脚本中调整如下参数:
GPUS_PER_NODE=8
- 调整全局批处理大小(global batch size)、微批处理大小(micro batch size)、数据并行大小(data_parallel_size)参数。三者的关系为:“global_batch_size”可被“micro_batch_size * data_parallel_size”整除。
本文设置的参数值如下:
global_batch_size = 64 micro_batch_size = 4 data_parallel_size = 8
- 单机多卡完整的预训练脚本内容如下:
#! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 64 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16
训练时监控的GPU利用率如下:
图7 GPU利用率
步骤4 使用GPT-2模型生成文本
- 自动式生成文本。
- 执行以下命令,创建文本生成脚本。
vim generate_text.sh
增加内容如下:
#!/bin/bash CHECKPOINT_PATH=checkpoints/gpt2 VOCAB_FILE=data/gpt2-vocab.json MERGE_FILE=data/gpt2-merges.txt python tools/generate_samples_gpt.py \ --tensor-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --load $CHECKPOINT_PATH \ --num-attention-heads 16 \ --max-position-embeddings 1024 \ --tokenizer-type GPT2BPETokenizer \ --fp16 \ --micro-batch-size 2 \ --seq-length 1024 \ --out-seq-length 1024 \ --temperature 1.0 \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --genfile unconditional_samples.json \ --num-samples 2 \ --top_p 0.9 \ --recompute
- 执行以下脚本,生成文本。
sh ./generate_text.sh
若回显信息如下,则表示生成文本完成。
图8 生成文本完成信息 - 查看模型生成的文本文件。
cat unconditional_samples.json
回显信息如下:
图9 文件信息
- 执行以下命令,创建文本生成脚本。
- 开启交互式对话模式。
- 执行以下命令,创建文本生成脚本。
vim interactive_text.sh
写入如下内容:
#!/bin/bash CHECKPOINT_PATH=/workspace/Megatron-DeepSpeed/checkpoints/gpt2_345m VOCAB_FILE=/workspace/Megatron-DeepSpeed/data/gpt2-vocab.json MERGE_FILE=/workspace/Megatron-DeepSpeed/data/gpt2-merges.txt deepspeed /workspace/Megatron-DeepSpeed/tools/generate_samples_gpt.py \ --tensor-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --load $CHECKPOINT_PATH \ --num-attention-heads 16 \ --max-position-embeddings 1024 \ --tokenizer-type GPT2BPETokenizer \ --fp16 \ --micro-batch-size 2 \ --seq-length 1024 \ --out-seq-length 1024 \ --temperature 1.0 \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --genfile unconditional_samples.json \ --num-samples 0 \ --top_p 0.9 \ --recompute
- 执行以下脚本,开启交互式对话。
bash interactive_text.sh
回显信息如下,输入huawei并回车后生成内容:
Context prompt (stop to exit) >>> huawei
回车后自动输出相关文本, 输出内容与模型训练、数据集强相关,这里仅为示例。
图10 模型输出文本信息
- 执行以下命令,创建文本生成脚本。