网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务
文档首页/ AI开发平台ModelArts/ ModelArts用户指南(Lite Server)/ Lite Server资源使用/ GPT-2基于Server适配PyTorch GPU的训练推理指导

GPT-2基于Server适配PyTorch GPU的训练推理指导

更新时间:2024-11-21 GMT+08:00
分享

场景描述

本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。

背景信息

  • Megatron-DeepSpeed

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。

    Megatron-LM是一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于自然语言处理任务,如文本生成、机器翻译和对话系统等。

    DeepSpeed是开源的加速深度学习训练的库。它针对大规模的模型和分布式训练进行了优化,可以显著提高训练速度和效率。DeepSpeed提供了各种技术和优化策略,包括分布式梯度下降、模型并行化、梯度累积和动态精度缩放等。它还支持优化大模型的内存使用和计算资源分配。

  • GPT2

    GPT2(Generative Pre-trained Transformer 2),是OpenAI组织在2018年于GPT模型的基础上发布的新预训练模型,是一个基于Transformer且非常庞大的语言模型。它在大量数据集上进行了训练,直接运行一个预训练好的GPT-2模型:给定一个预定好的起始单词或者句子,可以让它自行地随机生成后续的文本。

环境准备

在华为云ModelArts Server预购相关超强算力的GPU裸金属服务器,并选择AIGC场景通用的镜像,完成使用Megatron-DeepSpeed训练GPT2模型。本最佳实践使用以下镜像和规格:

  • 镜像选择:Ubuntu 20.04 x86 64bit SDI3 for Ant8 BareMetal with RoCE and NVIDIA-525 CUDA-12.0。
  • 裸金属规格选择: GP Ant8,包含8张GPU卡以及8张RoCE网卡。

关于Ant8裸金属服务器的购买,可以在华为云官网提工单至ModelArts云服务, 完成资源的申请。

步骤1 安装模型

  1. 安装Megatron-DeepSpeed框架。

    1. 使用root用户SSH的方式登录GPU裸金属服务器。具体登录方式请参见SSH密钥方式登录裸金属服务器
    2. 拉取pytorch镜像,可以选择常用的镜像源进行下载。
      docker pull nvcr.io/nvidia/pytorch:21.10-py3
    3. 启动容器。
      docker run -d -t --network=host --gpus all --privileged --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --name megatron-deepspeed -v /etc/localtime:/etc/localtime -v /root/.ssh:/root/.ssh nvcr.io/nvidia/pytorch:21.10-py3
    4. 执行以下命令,进入容器终端。
      docker exec -it megatron-deepspeed bash
    5. 下载Megatron-DeepSpeed框架。
      git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed
      说明:

      若git clone失败,可以尝试先下载至本地,然后复制至服务器中,在docker cp至容器中。

    6. 安装Megatron-DeepSpeed框架。
      cd Megatron-DeepSpeed
      pip install -r requirements.txt -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com
      pip install mpi4py -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com
    7. 修改测试代码,注释掉以下文件的断言所在行。
      vim /workspace/Megatron-DeepSpeed/megatron/model/fused_softmax.py +191

      “assert mask is None, "Mask is silently ignored due to the use of a custom kernel"”前加“#”,即:

      # assert mask is None, "Mask is silently ignored due to the use of a custom kernel"

  2. 数据集下载和预处理。

    本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据集。

    1. 下载数据集。
      wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz 
      wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
      wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
    2. 解压数据集。
      xz -d oscar-1GB.jsonl.xz
    3. 预处理数据。
      python3 tools/preprocess_data.py \
          --input oscar-1GB.jsonl \
          --output-prefix meg-gpt2 \
          --vocab gpt2-vocab.json \
          --dataset-impl mmap \
          --tokenizer-type GPT2BPETokenizer \
          --merge-file gpt2-merges.txt \
          --append-eod \
          --workers 8
      说明:
      若发生如下“np.float”报错,按照报错提示修改为“float”即可。
      图1 预处理数据报错
    4. 数据预处理完成标识。
      图2 数据预处理完成
    5. 新建data目录并移动处理好的数据。
      mkdir data 
      mv meg-gpt2* ./data 
      mv gpt2* ./data

步骤2 单机单卡训练

本小节使用上文的服务器环境和安装好的模型, 使用GP Ant8裸金属服务器, 完成单机单卡GPT-2 MEDIUM模型的训练。

  1. 创建预训练脚本文件。

    1. 执行以下命令,创建预训练脚本文件。
      vim pretrain_gpt2.sh
    2. 在文件中添加以下信息。
      #! /bin/bash
      
      # Runs the "345M" parameter model
      
      GPUS_PER_NODE=1
      # Change for multinode config
      MASTER_ADDR=localhost
      MASTER_PORT=6000
      NNODES=1
      NODE_RANK=0
      WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
      
      DATA_PATH=data/meg-gpt2_text_document
      CHECKPOINT_PATH=checkpoints/gpt2
      
      DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
      
      python -m torch.distributed.launch $DISTRIBUTED_ARGS \
             pretrain_gpt.py \
             --tensor-model-parallel-size 1 \
             --pipeline-model-parallel-size 1 \
             --num-layers 24 \
             --hidden-size 1024 \
             --num-attention-heads 16 \
             --micro-batch-size 4 \
             --global-batch-size 8 \
             --seq-length 1024 \
             --max-position-embeddings 1024 \
             --train-iters 5000 \
             --lr-decay-iters 320000 \
             --save $CHECKPOINT_PATH \
             --load $CHECKPOINT_PATH \
             --data-path $DATA_PATH \
             --vocab-file data/gpt2-vocab.json \
             --merge-file data/gpt2-merges.txt \
             --data-impl mmap \
             --split 949,50,1 \
             --distributed-backend nccl \
             --lr 0.00015 \
             --lr-decay-style cosine \
             --min-lr 1.0e-5 \
             --weight-decay 1e-2 \
             --clip-grad 1.0 \
             --lr-warmup-fraction .01 \
             --checkpoint-activations \
             --log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
             --fp16

  2. 开始训练。

    本文是单机单卡训练,使用预训练脚本参数控制:

    GPUS_PER_NODE=1
    NNODES=1
    NODE_RANK=0
    1. 执行以下命令,开始预训练。
      nohup sh ./pretrain_gpt2.sh &
      图3 开始预训练
    2. 实时查看训练日志,监控程序。
      tail -f nohup.out

      如果显示如下信息, 表示模型训练完成。

      图4 模型训练完成

      在训练过程中观察单GPU卡的利用率,如下:

      图5 GPU利用率

  3. 查看生成的模型checkpoint。

    本示例生成的模型checkpoint路径设置在“/workspace/Megatron-DeepSpeed/checkpoints/gpt2”

    ll ./checkpoints/gpt2
    图6 模型checkpoint

步骤3 单机多卡训练

和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。

  1. 当前选择GPU裸金属服务器是8卡, 因此需要在预训练脚本中调整如下参数:

    GPUS_PER_NODE=8

  2. 调整全局批处理大小(global batch size)、微批处理大小(micro batch size)、数据并行大小(data_parallel_size)参数。三者的关系为:“global_batch_size”可被“micro_batch_size * data_parallel_size”整除。

    本文设置的参数值如下:

    global_batch_size = 64 
    micro_batch_size = 4 
    data_parallel_size = 8

  3. 单机多卡完整的预训练脚本内容如下:

    #! /bin/bash
    
    # Runs the "345M" parameter model
    
    GPUS_PER_NODE=8
    # Change for multinode config
    MASTER_ADDR=localhost
    MASTER_PORT=6000
    NNODES=1
    NODE_RANK=0
    WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
    
    DATA_PATH=data/meg-gpt2_text_document
    CHECKPOINT_PATH=checkpoints/gpt2
    
    DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
    
    python -m torch.distributed.launch $DISTRIBUTED_ARGS \
           pretrain_gpt.py \
           --tensor-model-parallel-size 1 \
           --pipeline-model-parallel-size 1 \
           --num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --micro-batch-size 4 \
           --global-batch-size 64 \
           --seq-length 1024 \
           --max-position-embeddings 1024 \
           --train-iters 5000 \
           --lr-decay-iters 320000 \
           --save $CHECKPOINT_PATH \
           --load $CHECKPOINT_PATH \
           --data-path $DATA_PATH \
           --vocab-file data/gpt2-vocab.json \
           --merge-file data/gpt2-merges.txt \
           --data-impl mmap \
           --split 949,50,1 \
           --distributed-backend nccl \
           --lr 0.00015 \
           --lr-decay-style cosine \
           --min-lr 1.0e-5 \
           --weight-decay 1e-2 \
           --clip-grad 1.0 \
           --lr-warmup-fraction .01 \
           --checkpoint-activations \
           --log-interval 10 \
           --save-interval 500 \
           --eval-interval 100 \
           --eval-iters 10 \
           --fp16

    训练时监控的GPU利用率如下:

    图7 GPU利用率

步骤4 使用GPT-2模型生成文本

  1. 自动式生成文本。

    1. 执行以下命令,创建文本生成脚本。
      vim generate_text.sh

      增加内容如下:

      #!/bin/bash
      
      CHECKPOINT_PATH=checkpoints/gpt2
      VOCAB_FILE=data/gpt2-vocab.json
      MERGE_FILE=data/gpt2-merges.txt
      
      python tools/generate_samples_gpt.py \
             --tensor-model-parallel-size 1 \
             --num-layers 24 \
             --hidden-size 1024 \
             --load $CHECKPOINT_PATH \
             --num-attention-heads 16 \
             --max-position-embeddings 1024 \
             --tokenizer-type GPT2BPETokenizer \
             --fp16 \
             --micro-batch-size 2 \
             --seq-length 1024 \
             --out-seq-length 1024 \
             --temperature 1.0 \
             --vocab-file $VOCAB_FILE \
             --merge-file $MERGE_FILE \
             --genfile unconditional_samples.json \
             --num-samples 2 \
             --top_p 0.9 \
             --recompute
    2. 执行以下脚本,生成文本。
      sh ./generate_text.sh

      若回显信息如下,则表示生成文本完成。

      图8 生成文本完成信息
    3. 查看模型生成的文本文件。
      cat unconditional_samples.json

      回显信息如下:

      图9 文件信息

  2. 开启交互式对话模式。

    1. 执行以下命令,创建文本生成脚本。
      vim interactive_text.sh

      写入如下内容:

      #!/bin/bash
      
      CHECKPOINT_PATH=/workspace/Megatron-DeepSpeed/checkpoints/gpt2_345m
      VOCAB_FILE=/workspace/Megatron-DeepSpeed/data/gpt2-vocab.json
      MERGE_FILE=/workspace/Megatron-DeepSpeed/data/gpt2-merges.txt
      
      deepspeed /workspace/Megatron-DeepSpeed/tools/generate_samples_gpt.py \
             --tensor-model-parallel-size 1 \
             --num-layers 24 \
             --hidden-size 1024 \
             --load $CHECKPOINT_PATH \
             --num-attention-heads 16 \
             --max-position-embeddings 1024 \
             --tokenizer-type GPT2BPETokenizer \
             --fp16 \
             --micro-batch-size 2 \
             --seq-length 1024 \
             --out-seq-length 1024 \
             --temperature 1.0 \
             --vocab-file $VOCAB_FILE \
             --merge-file $MERGE_FILE \
             --genfile unconditional_samples.json \
             --num-samples 0 \
             --top_p 0.9 \
             --recompute
    2. 执行以下脚本,开启交互式对话。
      bash interactive_text.sh

      回显信息如下,输入huawei并回车后生成内容:

      Context prompt (stop to exit) >>> huawei

      回车后自动输出相关文本, 输出内容与模型训练、数据集强相关,这里仅为示例。

      图10 模型输出文本信息

提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容