网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

在Notebook中通过Dockerfile从0制作自定义镜像用于推理

更新时间:2025-01-24 GMT+08:00
分享

场景说明

针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。

本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。本案例仅适用于华为云北京四和上海一站点。

操作流程如下:

  1. Step1 在Notebook中构建一个新镜像:在ModelArts的开发环境Notebook中制作自定义镜像,镜像规范可参考创建模型的自定义镜像规范
  2. Step2 构建成功的镜像注册到镜像管理模块:将构建成功的自定义镜像注册到ModelArts的镜像管理模块中,方便下一步调试。
  3. Step3 在Notebook中变更镜像并调试:在Notebook中调试镜像。
  4. Step4 使用调试成功的镜像用于推理部署:将调试完成的镜像导入ModelArts的模型管理中,并部署上线。

Step1 在Notebook中构建一个新镜像

本章节以ModelArts提供的基础镜像tensorflow为例介绍如何在ModelArts的Notebook中构建一个新镜像并用于模型部署。

  1. 登录ModelArts控制台,在左侧导航栏中选择“全局配置”,检查是否配置了访问授权。如果未配置,请先配置访问授权。参考使用委托授权完成操作
  2. 登录ModelArts控制台,在左侧导航栏中选择“开发环境 > Notebook”,进入“Notebook”管理页面。
  3. 单击右上角“创建”,进入“创建Notebook”页面,请参见如下说明填写参数。
    1. 填写Notebook基本信息,包含名称、描述、是否自动停止。
    2. 填写Notebook详细参数,如选择镜像、资源规格等。
      • “镜像”:选择公共镜像下任意一个支持CPU类型的镜像,例如:tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04
      • “资源池”:选择公共资源池或专属资源池,此处以公共资源池为例。
      • “类型”:推荐选择GPU。
      • “规格”:推荐选择GP Tnt004规格,如果没有再选择其他规格。
  4. 参数填写完成后,单击“立即创建”进行规格确认。参数确认无误后,单击“提交”,完成Notebook的创建操作。

    进入Notebook列表,正在创建中的Notebook状态为“创建中”,创建过程需要几分钟,请耐心等待。当Notebook状态变为“运行中”时,表示Notebook已创建并启动完成。

  5. 打开运行中的Notebook实例。
    图1 打开Notebook实例
  6. 通过功能,上传Dockerfile文件和模型包文件到Notebook中,默认工作目录/home/ma-user/work/。

    Dockerfile文件的具体内容请参见附录1:Dockerfile模板。模型包文件需要用户自己准备,样例内容请参见附录2:模型包文件样例

    图2 上传dockerfile文件和模型包文件
  7. 打开Terminal终端,解压model.zip,解压后删除zip文件。
    #解压命令
    unzip model.zip
    图3 在Terminal终端中解压model.zip
  8. 打开一个新的.ipynb文件,启动构建脚本,在构建脚本中指定dockerfile文件和镜像的推送地址。构建脚本当前仅支持华为云北京四和上海一站点。
    图4 启动构建脚本

    构建脚本内容如下:

    from modelarts.image_builder import ImageBuilder
    from modelarts.session import Session
    session = Session()
    
    image = ImageBuilder(session=session,
       dockerfile_path="/home/ma-user/work/Dockerfile",
       image_url="custom_test/tensorflow2.1:1.0.0",#custom_test是组织名,tensorflow2.1是镜像名称,1.0.0是tag
       context="/home/ma-user/work")
    result = image.build_push()

    等待镜像构建完成。镜像构建完成后会自动推送到SWR中。

    图5 等待镜像构建完成

Step2 构建成功的镜像注册到镜像管理模块

Step1 在Notebook中构建一个新镜像中构建成功的自定义镜像注册到镜像管理中,方便后续使用。

  1. 登录ModelArts控制台,在左侧导航栏中选择“镜像管理”,单击“注册镜像”,进入注册镜像页面。
  2. 输入镜像源地址,选择架构和类型后,单击“立即注册”
    • “镜像源”:地址为swr.cn-north-4-myhuaweicloud.com/custom_test/tensorflow2.1:1.0.0。其中custom_test/tensorflow2.1:1.0.0为8镜像构建脚本中设置的镜像地址。
    • “架构”:选择X86_64
    • “类型”:选择CPU
    图6 注册镜像
  3. 注册完成后,可以在镜像管理页面查看到注册成功的镜像。

Step3 在Notebook中变更镜像并调试

使用制作完成的自定义镜像进行推理服务调试,调试成功后再导入到ModelArts的模型中并部署为在线服务。

  1. 登录ModelArts控制台,在左侧导航栏中选择“开发环境 > Notebook”,进入“Notebook”管理页面。停止Step1 在Notebook中构建一个新镜像中创建的Notebook。
  2. 在Notebook对应操作列,单击“更多 > 变更镜像”,打开“变更镜像”弹出框,变更镜像选择“自定义镜像”,将当前镜像变更为Step2 构建成功的镜像注册到镜像管理模块注册的镜像,如图7所示。
    图7 变更镜像
  3. 启动变更后的Notebook,并打开。进入Terminal运行界面,在工作目录,运行启动脚本run.sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。
    图8 运行启动脚本
  4. 上传一张预测图片(手写数字图片)到Notebook中。
    图9 手写数字图片
    图10 上传预测图片
  5. 重新打开一个新的Terminal终端,执行如下命令进行预测。
    curl -kv -F 'images=@/home/ma-user/work/test.png' -X POST http://127.0.0.1:8080/
    图11 预测

    在调试过程中,如果有修改模型文件或者推理脚本文件,需要重启run.sh脚本。执行如下命令先停止nginx服务,再运行run.sh脚本。

    #查询nginx进程
    ps -ef |grep nginx 
    #关闭所有nginx相关进程
    kill -9 {进程ID}  
    #运行run.sh脚本
    sh run.sh

    也可以执行pkill nginx命令直接关闭所有nginx进程。

    #关闭所有nginx进程
    pkill nginx
    #运行run.sh脚本
    sh run.sh
    图12 重启run.sh脚本

Step4 使用调试成功的镜像用于推理部署

Step3 在Notebook中变更镜像并调试中调试成功的自定义镜像导入到模型中,并部署为在线服务。

  1. 登录ModelArts控制台,在左侧导航栏中选择“模型管理”,单击“创建”,进入模型管理。
  2. 设置模型的参数,如图13所示。
    • 元模型来源:从容器镜像中选择。
    • 容器镜像所在的路径:单击选择前面创建的镜像。
    • 容器调用接口:选择HTTPS。
    • host:设置为8443。
    • 部署类型:选择在线部署。
    图13 设置模型参数
  3. 填写apis定义,单击“保存”生效。apis定义中指定输入为文件,具体内容参见下面代码样例。
    图14 填写apis定义

    apis定义具体内容如下:

    [{
    	"url": "/",
    	"method": "post",
    	"request": {
    		"Content-type": "multipart/form-data",
    		"data": {
    			"type": "object",
    			"properties": {
    				"images": {
    					"type": "file"
    				}
    			}
    		}
    	},
    	"response": {
    		"Content-type": "application/json",
    		"data": {
    			"type": "object",
    			"properties": {
    				"result": {
    					"type": "integer"
    				}
    			}
    		}
    	}
    }]
    须知:

    apis定义提供模型对外Restfull api数据定义,用于定义模型的输入、输出格式。

    • 创建模型填写apis。在创建的模型部署服务成功后,进行预测时,会自动识别预测类型。
    • 创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,需选择“请求类型”。“请求类型”可选择“application/json”或“multipart/form-data”。请根据元模型,选择合适的类型。
  4. 设置完成后,单击“立即创建”,等待模型状态变为“正常”
  5. 单击新建的模型名称左侧的小三角形,展开模型的版本列表。在操作列单击“部署 > 在线服务”,跳转至在线服务的部署页面。
  6. 在部署页面,参考如下说明填写关键参数。

    “名称”:按照界面提示规则自定义一个在线服务的名称,也可以使用默认值。

    “资源池”:选择“公共资源池”

    “模型来源”“选择模型及版本”:会自动选择模型和版本号。

    “计算节点规格”:在下拉框中选择“限时免费”资源,勾选并阅读免费规格说明。

    其他参数可使用默认值。

    说明:

    如果限时免费资源售罄,建议选择收费CPU资源进行部署。当选择收费CPU资源部署在线服务时会收取少量资源费用,具体费用以界面信息为准。

  7. 参数配置完成后,单击“下一步”,确认规格参数后,单击“提交”启动在线服务的部署。
  8. 进入“部署上线 > 在线服务”页面,等待服务状态变为“运行中”时,表示服务部署成功。单击操作列的“预测”,进入服务详情页的“预测”页面。上传图片,预测结果。
    图15 预测

附录1:Dockerfile模板

Dockerfile样例,此样例可以直接另存为一个Dockerfile文件使用。此处可以使用的基础镜像列表请参见推理专属预置镜像列表
FROM swr.cn-north-4.myhuaweicloud.com/atelier/tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221121111529-d65d817

# here create a soft link from '/home/ma-user/anaconda/lib/python3.7/site-packages/model_service' to '/home/ma-user/infer/model_service'. It’s the build-in inference framework code dir
# if the installed python version of this base image is python3.8, you should create a soft link from '/home/ma-user/anaconda/lib/python3.8/site-packages/model_service' to '/home/ma-user/infer/model_service'.
USER root
RUN ln -s /home/ma-user/anaconda/lib/python3.7/site-packages/model_service  /home/ma-user/infer/model_service
USER ma-user

# here we supply a demo, you can change it to your own model files
ADD model/  /home/ma-user/infer/model/1
USER root
RUN chown -R ma-user:ma-group  /home/ma-user/infer/model/1
USER ma-user

# default MODELARTS_SSL_CLIENT_VERIFY switch is "true". In order to debug, we set it to be "false"
ENV MODELARTS_SSL_CLIENT_VERIFY="false"

# change your port and protocol here, default is 8443 and https
# ENV MODELARTS_SERVICE_PORT=8080
# ENV MODELARTS_SSL_ENABLED="false"

# add pip install here
# RUN pip install numpy==1.16.4
# RUN pip install -r requirements.txt

# default cmd, you can chage it here
# CMD sh /home/ma-user/infer/run.sh

附录2:模型包文件样例

模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。

Model目录下必须要包含推理脚本文件customize_service.py,目的是为开发者提供模型预处理和后处理的逻辑。

图16 推理模型model目录示意图(需要用户自己准备模型文件)

推理脚本customize_service.py的具体写法要求可以参考模型推理代码编写说明

本案例中提供的customize_service.py文件具体内容如下:

import logging
import threading

import numpy as np
import tensorflow as tf
from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService


class mnist_service(TfServingBaseService):

    def __init__(self, model_name, model_path):
        self.model_name = model_name
        self.model_path = model_path
        self.model = None
        self.predict = None

        # 非阻塞方式加载saved_model模型,防止阻塞超时
        thread = threading.Thread(target=self.load_model)
        thread.start()

    def load_model(self):
        # load saved_model 格式的模型
        self.model = tf.saved_model.load(self.model_path)

        signature_defs = self.model.signatures.keys()

        signature = []
        # only one signature allowed
        for signature_def in signature_defs:
            signature.append(signature_def)

        if len(signature) == 1:
            model_signature = signature[0]
        else:
            logging.warning("signatures more than one, use serving_default signature from %s", signature)
            model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

        self.predict = self.model.signatures[model_signature]

    def _preprocess(self, data):
        images = []
        for k, v in data.items():
            for file_name, file_content in v.items():
                image1 = Image.open(file_content)
                image1 = np.array(image1, dtype=np.float32)
                image1.resize((28, 28, 1))
                images.append(image1)

        images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
        preprocessed_data = images

        return preprocessed_data

    def _inference(self, data):

        return self.predict(data)

    def _postprocess(self, data):

        return {
            "result": int(data["output"].numpy()[0].argmax())
        }
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容