网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

模型推理代码编写说明

更新时间:2024-12-10 GMT+08:00
分享

本章节介绍了在ModelArts中模型推理代码编写的通用方法及说明,针对常用AI引擎的自定义脚本代码示例(包含推理代码示例),请参见自定义脚本代码示例。本文在编写说明下方提供了一个TensorFlow引擎的推理代码示例以及一个在推理脚本中自定义推理逻辑的示例。

ModelArts推理因API网关(APIG)的限制,模型单次预测的时间不能超过40S,模型推理代码编写需逻辑清晰,代码简洁,以此达到更好的推理效果。

推理代码编写指导

  1. 在模型代码推理文件“customize_service.py”中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如表1所示。导入语句所涉及的Python包在ModelArts环境中已配置,用户无需自行安装。
    表1 各模型类型的父类名称和导入语句

    模型类型

    父类

    导入语句

    TensorFlow

    TfServingBaseService

    from model_service.tfserving_model_service import TfServingBaseService

    PyTorch

    PTServingBaseService

    from model_service.pytorch_model_service import PTServingBaseService

    MindSpore

    SingleNodeService

    from model_service.model_service import SingleNodeService

  2. 可以重写的方法有以下几种。
    表2 重写方法

    方法名

    说明

    __init__(self, model_name, model_path)

    初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。

    __init__(self, model_path)

    初始化方法,适用于机器学习框架模型。该方法内初始化模型的路径(self.model_path)。在Spark_MLlib中,该方法还会初始化SparkSession(self.spark)。

    _preprocess(self, data)

    预处理方法,在推理请求前调用,用于将API接口输入的用户原始请求数据转换为模型期望输入数据。

    _inference(self, data)

    实际推理请求方法(不建议重写,重写后会覆盖ModelArts内置的推理过程,运行自定义的推理逻辑)。

    _postprocess(self, data)

    后处理方法,在推理请求完成后调用,用于将模型输出转换为API接口输出。

    说明:
    • 用户可以选择重写preprocess和postprocess方法,以实现API输入数据的预处理和推理输出结果的后处理。
    • 重写模型父类的初始化方法init可能导致模型“运行异常”
  3. 可以使用的属性为模型所在的本地路径,属性名为“self.model_path”。另外pyspark模型在“customize_service.py”中可以使用“self.spark”获取SparkSession对象。
    说明:

    推理代码中,需要通过绝对路径读取文件。模型所在的本地路径可以通过self.model_path属性获得。

    • 当使用TensorFlow、Caffe、MXNet时,self.model_path为模型文件目录路径,读取文件示例如下:
      # model目录下放置label.json文件,此处读取
      with open(os.path.join(self.model_path, 'label.json')) as f:
          self.label = json.load(f)
    • 当使用PyTorch、Scikit_Learn、pyspark时,self.model_path为模型文件路径,读取文件示例如下:
      # model目录下放置label.json文件,此处读取     
      dir_path = os.path.dirname(os.path.realpath(self.model_path))
      with open(os.path.join(dir_path, 'label.json')) as f:
          self.label = json.load(f)
  4. 预处理方法、实际推理请求方法和后处理方法中的接口传入“data”当前支持两种content-type,即“multipart/form-data”“application/json”
    • “multipart/form-data”请求
      curl -X POST \
        <modelarts-inference-endpoint> \
        -F image1=@cat.jpg \
        -F image2=@horse.jpg

      对应的传入data为

      [
         {
            "image1":{
               "cat.jpg":"<cat.jpg file io>"
            }
         },
         {
            "image2":{
               "horse.jpg":"<horse.jpg file io>"
            }
         }
      ]
    • “application/json”请求
       curl -X POST \
         <modelarts-inference-endpoint> \
         -d '{
          "images":"base64 encode image"
          }'

      对应的传入data为python dict

       {
          "images":"base64 encode image"
       }

TensorFlow的推理脚本示例

TensorFlow MnistService示例如下。更多TensorFlow推理代码示例请参考TensorflowTensorflow2.1
  • 推理代码
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    from PIL import Image
    import numpy as np
    from model_service.tfserving_model_service import TfServingBaseService
    
    class MnistService(TfServingBaseService):
    
        def _preprocess(self, data):
            preprocessed_data = {}
    
            for k, v in data.items():
                for file_name, file_content in v.items():
                    image1 = Image.open(file_content)
                    image1 = np.array(image1, dtype=np.float32)
                    image1.resize((1, 784))
                    preprocessed_data[k] = image1
    
            return preprocessed_data
    
        def _postprocess(self, data):
    
            infer_output = {}
    
            for output_name, result in data.items():
    
                infer_output["mnist_result"] = result[0].index(max(result[0]))
    
            return infer_output
    
  • 请求
    curl -X POST \ 在线服务地址 \ -F images=@test.jpg
  • 返回
    {"mnist_result": 7}

在上面的代码示例中,完成了将用户表单输入的图片的大小调整,转换为可以适配模型输入的shape。首先通过Pillow库读取“32×32”的图片,调整图片大小为“1×784”以匹配模型输入。在后续处理中,转换模型输出为列表,用于Restful接口输出展示。

自定义推理逻辑的推理脚本示例

首先,需要在配置文件中,定义自己的依赖包,详细示例请参见使用自定义依赖包的模型配置文件示例。然后通过如下示例代码,实现了“saved_model”格式模型的加载推理。

说明:

当前推理基础镜像使用的python的logging模块,采用的是默认的日志级别Warning,即当前只有warning级别的日志可以默认查询出来。如果想要指定INFO等级的日志能够查询出来,需要在代码中指定logging的输出日志等级为INFO级别。

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
# -*- coding: utf-8 -*-
import json
import os
import threading
import numpy as np
import tensorflow as tf
from PIL import Image
from model_service.tfserving_model_service import TfServingBaseService
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class MnistService(TfServingBaseService):
    def __init__(self, model_name, model_path):
        self.model_name = model_name
        self.model_path = model_path
        self.model_inputs = {}
        self.model_outputs = {}

        # label文件可以在这里加载,在后处理函数里使用
        # label.txt放在OBS和模型包的目录

        # with open(os.path.join(self.model_path, 'label.txt')) as f:
        #     self.label = json.load(f)

        # 非阻塞方式加载saved_model模型,防止阻塞超时
        thread = threading.Thread(target=self.get_tf_sess)
        thread.start()

    def get_tf_sess(self):
        # 加载saved_model格式的模型
        # session要重用,建议不要用with语句
        sess = tf.Session(graph=tf.Graph())
        meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], self.model_path)
        signature_defs = meta_graph_def.signature_def
        self.sess = sess
        signature = []

        # only one signature allowed
        for signature_def in signature_defs:
            signature.append(signature_def)
        if len(signature) == 1:
            model_signature = signature[0]
        else:
            logger.warning("signatures more than one, use serving_default signature")
            model_signature = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

        logger.info("model signature: %s", model_signature)

        for signature_name in meta_graph_def.signature_def[model_signature].inputs:
            tensorinfo = meta_graph_def.signature_def[model_signature].inputs[signature_name]
            name = tensorinfo.name
            op = self.sess.graph.get_tensor_by_name(name)
            self.model_inputs[signature_name] = op

        logger.info("model inputs: %s", self.model_inputs)

        for signature_name in meta_graph_def.signature_def[model_signature].outputs:
            tensorinfo = meta_graph_def.signature_def[model_signature].outputs[signature_name]
            name = tensorinfo.name
            op = self.sess.graph.get_tensor_by_name(name)
            self.model_outputs[signature_name] = op

        logger.info("model outputs: %s", self.model_outputs)

    def _preprocess(self, data):
        # https两种请求形式
        # 1. form-data文件格式的请求对应:data = {"请求key值":{"文件名":<文件io>}}
        # 2. json格式对应:data = json.loads("接口传入的json体")
        preprocessed_data = {}

        for k, v in data.items():
            for file_name, file_content in v.items():
                image1 = Image.open(file_content)
                image1 = np.array(image1, dtype=np.float32)
                image1.resize((1, 28, 28))
                preprocessed_data[k] = image1

        return preprocessed_data

    def _inference(self, data):
        feed_dict = {}
        for k, v in data.items():
            if k not in self.model_inputs.keys():
                logger.error("input key %s is not in model inputs %s", k, list(self.model_inputs.keys()))
                raise Exception("input key %s is not in model inputs %s" % (k, list(self.model_inputs.keys())))
            feed_dict[self.model_inputs[k]] = v

        result = self.sess.run(self.model_outputs, feed_dict=feed_dict)
        logger.info('predict result : ' + str(result))
        return result

    def _postprocess(self, data):
        infer_output = {"mnist_result": []}
        for output_name, results in data.items():

            for result in results:
                infer_output["mnist_result"].append(np.argmax(result))

        return infer_output

    def __del__(self):
        self.sess.close()
说明:

对于ModelArts不支持的结构模型或者多模型加载,需要__init__方法中自己指定模型加载的路径。示例代码如下:

# -*- coding: utf-8 -*-
import os
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):
    def __init__(self, model_name, model_path):
        # 获取程序当前运行路径,即model文件夹所在的路径
        root = os.path.dirname(os.path.abspath(__file__))
        # test.onnx为待加载模型文件的名称,需要放在model文件夹下
        self.model_path = os.path.join(root, test.onnx)
        
        # 多模型加载,例如:test2.onnx 
        # self.model_path2 = os.path.join(root, test2.onnx)

MindSpore的推理脚本示例

  • snt3芯片目前只有北京四提工单申请权限后才可以使用,支持模型格式为.om,推理脚本如下:

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import json
    import os
    
    import numpy as np
    from PIL import Image
    from hiai.nn_tensor_lib import NNTensor
    from hiai.nntensor_list import NNTensorList
    from model_service.hiai_model_service import HiaiBaseService
    
    class DemoService(HiaiBaseService):
      def __init__(self, *args, **kwargs):
    	# 默认加载模型包目录下的om文件
    	super(DemoService, self).__init__(*args, **kwargs)
    	self.labels_list = None
    	self.is_multilabel = False
    
      def _preprocess(self, data):
    	preprocessed_data = {}
    	images = []
    	for k, v in data.items():
    	  for file_name, file_content in v.items():
    	  image = Image.open(file_content)
    	  image = np.array(image)  # NHWC
    	  # AIPP should use RGB format.
    	  # mean reg is applied in AIPP.
    	  # Transpose is applied in AIPP
    	  tensor = NNTensor(image)
    	  images.append(tensor)
    	  tensor_list = NNTensorList(images)
    	preprocessed_data['images'] = tensor_list
    	return preprocessed_data
    
      def _inference(self, data, image_info=None):
    	result = {}
    	for k, v in data.items():
    	  result[k] = self.model.proc(v)
    	return result
    
      def _postprocess(self, data):
    	# 这里增加自己的后处理
    	return str(data)
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容