更新时间:2024-10-24 GMT+08:00
分享

自定义脚本代码示例

Tensorflow

TensorFlow存在两种接口类型,keras接口和tf接口,其训练和保存模型的代码存在差异,但是推理代码编写方式一致。

训练模型(keras接口)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

# 导入训练数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

from keras.layers import Dense
from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

# 定义模型网络
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(units=10, activation='softmax'))

# 定义优化器,损失函数等
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.summary()
# 训练
model.fit(x_train, y_train, epochs=2)
# 评估
model.evaluate(x_test, y_test)

保存模型(keras接口)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from keras import backend as K  

# K.get_session().run(tf.global_variables_initializer())

# 定义预测接口的inputs和outputs
# inputs和outputs字典的key值会作为模型输入输出tensor的索引键
# 模型输入输出定义需要和推理自定义脚本相匹配
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
    inputs={"images" : model.input},
    outputs={"scores" : model.output}
)

# 定义保存路径
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

    sess = K.get_session(),
    # 推理部署需要定义tf.saved_model.tag_constants.SERVING标签
    tags=[tf.saved_model.tag_constants.SERVING],
    """
    signature_def_map:items只能有一个,或者需要定义相应的key为
    tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
    """
    signature_def_map={
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            predict_signature
    }

)
builder.save()

训练模型(tf接口)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import print_function

import gzip
import os
import urllib

import numpy
import tensorflow as tf
from six.moves import urllib

# 训练数据来源于yann lecun官方网站http://yann.lecun.com/exdb/mnist/
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000


def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
        os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
    return filepath


def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting %s' % filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data


def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot


def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting %s' % filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                'Invalid magic number %d in MNIST label file: %s' %
                (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_to_one_hot(labels)
        return labels


class DataSet(object):
    """Class encompassing test, validation and training MNIST data set."""

    def __init__(self, images, labels, fake_data=False, one_hot=False):
        """Construct a DataSet. one_hot arg is used only if fake_data is true."""

        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                    'images.shape: %s labels.shape: %s' % (images.shape,
                                                           labels.shape))
            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(numpy.float32)
            images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0

    @property
    def images(self):
        return self._images

    @property
    def labels(self):
        return self._labels

    @property
    def num_examples(self):
        return self._num_examples

    @property
    def epochs_completed(self):
        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):
        """Return the next `batch_size` examples from this data set."""
        if fake_data:
            fake_image = [1] * 784
            if self.one_hot:
                fake_label = [1] + [0] * 9
            else:
                fake_label = 0
            return [fake_image for _ in range(batch_size)], [
                fake_label for _ in range(batch_size)
            ]
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
            # Finished epoch
            self._epochs_completed += 1
            # Shuffle the data
            perm = numpy.arange(self._num_examples)
            numpy.random.shuffle(perm)
            self._images = self._images[perm]
            self._labels = self._labels[perm]
            # Start next epoch
            start = 0
            self._index_in_epoch = batch_size
            assert batch_size <= self._num_examples
        end = self._index_in_epoch
        return self._images[start:end], self._labels[start:end]


def read_data_sets(train_dir, fake_data=False, one_hot=False):
    """Return training, validation and testing data sets."""

    class DataSets(object):
        pass

    data_sets = DataSets()

    if fake_data:
        data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
        data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
        data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
        return data_sets

    local_file = maybe_download(TRAIN_IMAGES, train_dir)
    train_images = extract_images(local_file)

    local_file = maybe_download(TRAIN_LABELS, train_dir)
    train_labels = extract_labels(local_file, one_hot=one_hot)

    local_file = maybe_download(TEST_IMAGES, train_dir)
    test_images = extract_images(local_file)

    local_file = maybe_download(TEST_LABELS, train_dir)
    test_labels = extract_labels(local_file, one_hot=one_hot)

    validation_images = train_images[:VALIDATION_SIZE]
    validation_labels = train_labels[:VALIDATION_SIZE]
    train_images = train_images[VALIDATION_SIZE:]
    train_labels = train_labels[VALIDATION_SIZE:]

    data_sets.train = DataSet(train_images, train_labels)
    data_sets.validation = DataSet(validation_images, validation_labels)
    data_sets.test = DataSet(test_images, test_labels)
    return data_sets

training_iteration = 1000

modelarts_example_path =  './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x')  # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
    tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))
for _ in range(training_iteration):
    batch = mnist.train.next_batch(50)
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
    accuracy, feed_dict={
        x: mnist.test.images,
        y_: mnist.test.labels
    }))
print('Done training!')

保存模型(tf接口)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# 导出模型
# 模型需要采用saved_model接口保存
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

# 定义预测接口的inputs和outputs
# inputs和outputs字典的key值会作为模型输入输出tensor的索引键
# 模型输入输出定义需要和推理自定义脚本相匹配
prediction_signature = (
    tf.saved_model.signature_def_utils.build_signature_def(
        inputs={'images': tensor_info_x},
        outputs={'scores': tensor_info_y},
        method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
    # tag设为serve/tf.saved_model.tag_constants.SERVING
    sess, [tf.saved_model.tag_constants.SERVING],
    signature_def_map={
        'predict_images':
            prediction_signature,
    },
    legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

推理代码(keras接口和tf接口)

在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1。本案例中调用父类“_inference(self, data)”推理请求方法,因此下文代码中不需要重写方法。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService


class MnistService(TfServingBaseService):

    # 预处理中处理用户HTTPS接口输入匹配模型输入
    # 对应上述训练部分的模型输入为{"images":<array>}
    def _preprocess(self, data):

        preprocessed_data = {}
        images = []
        # 对输入数据进行迭代
        for k, v in data.items():
            for file_name, file_content in v.items():
                image1 = Image.open(file_content)
                image1 = np.array(image1, dtype=np.float32)
                image1.resize((1,784))
                images.append(image1)
        # 返回numpy array
        images = np.array(images,dtype=np.float32)
        # 对传入的多个样本做batch处理,shape保持和训练时输入一致
        images.resize((len(data), 784))
        preprocessed_data['images'] = images
        return preprocessed_data

    # 对应的上述训练部分保存模型的输出为{"scores":<array>}
    # 后处理中处理模型输出为HTTPS的接口输出
    def _postprocess(self, data):
        infer_output = {"mnist_result": []}
        # 迭代处理模型输出
        for output_name, results in data.items():
            for result in results:
                infer_output["mnist_result"].append(result.index(max(result)))
        return infer_output

Tensorflow2.1

训练并保存模型

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    # 对输出层命名output,在模型推理时通过该命名取结果
    tf.keras.layers.Dense(10, activation='softmax', name="output")
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10)

tf.keras.models.save_model(model, "./mnist")

推理代码

在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1

import logging
import threading

import numpy as np
import tensorflow as tf
from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService

logger = logging.getLogger()
logger.setLevel(logging.INFO)


class MnistService(TfServingBaseService):

    def __init__(self, model_name, model_path):
        self.model_name = model_name
        self.model_path = model_path
        self.model = None
        self.predict = None

        # label文件可以在这里加载,在后处理函数里使用
        # label.txt放在obs和模型包的目录

        # with open(os.path.join(self.model_path, 'label.txt')) as f:
        #     self.label = json.load(f)
        # 非阻塞方式加载saved_model模型,防止阻塞超时
        thread = threading.Thread(target=self.load_model)
        thread.start()

    def load_model(self):
        # load saved_model 格式的模型
        self.model = tf.saved_model.load(self.model_path)

        signature_defs = self.model.signatures.keys()

        signature = []
        # only one signature allowed
        for signature_def in signature_defs:
            signature.append(signature_def)

        if len(signature) == 1:
            model_signature = signature[0]
        else:
            logging.warning("signatures more than one, use serving_default signature from %s", signature)
            model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

        self.predict = self.model.signatures[model_signature]

    def _preprocess(self, data):
        images = []
        for k, v in data.items():
            for file_name, file_content in v.items():
                image1 = Image.open(file_content)
                image1 = np.array(image1, dtype=np.float32)
                image1.resize((28, 28, 1))
                images.append(image1)

        images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
        preprocessed_data = images

        return preprocessed_data

    def _inference(self, data):

        return self.predict(data)

    def _postprocess(self, data):

        return {
            "result": int(data["output"].numpy()[0].argmax())
        }

Pytorch

训练模型

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

# 定义网络结构
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 输入第二维需要为784
        self.hidden1 = nn.Linear(784, 5120, bias=False)
        self.output = nn.Linear(5120, 10, bias=False)

    def forward(self, x):
        x = x.view(x.size()[0], -1)
        x = F.relu((self.hidden1(x)))
        x = F.dropout(x, 0.2)
        x = self.output(x)
        return F.log_softmax(x)

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

def test( model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

device = torch.device("cpu")

batch_size=64

kwargs={}

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('.', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('.', train=False, transform=transforms.Compose([
        transforms.ToTensor()
    ])),
    batch_size=1000, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())

for epoch in range(1, 2 + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

保存模型

# 必须采用state_dict的保存方式,支持异地部署
torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")

推理代码

在模型代码推理文件customize_service.py中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如请参考表1

from PIL import Image
import log
from model_service.pytorch_model_service import PTServingBaseService
import torch.nn.functional as F

import torch.nn as nn
import torch
import json

import numpy as np

logger = log.getLogger(__name__)

import torchvision.transforms as transforms

# 定义模型预处理
infer_transformation = transforms.Compose([
    transforms.Resize((28,28)),
    # 需要处理成pytorch tensor
    transforms.ToTensor()
])


import os


class PTVisionService(PTServingBaseService):

    def __init__(self, model_name, model_path):
        # 调用父类构造方法
        super(PTVisionService, self).__init__(model_name, model_path)
        # 调用自定义函数加载模型
        self.model = Mnist(model_path)
        # 加载标签
        self.label = [0,1,2,3,4,5,6,7,8,9]
        # 亦可通过文件标签文件加载
        # model目录下放置label.json文件,此处读取
        dir_path = os.path.dirname(os.path.realpath(self.model_path))
        with open(os.path.join(dir_path, 'label.json')) as f:
            self.label = json.load(f)


    def _preprocess(self, data):

        preprocessed_data = {}
        for k, v in data.items():
            input_batch = []
            for file_name, file_content in v.items():
                with Image.open(file_content) as image1:
                    # 灰度处理
                    image1 = image1.convert("L")
                    if torch.cuda.is_available():
                        input_batch.append(infer_transformation(image1).cuda())
                    else:
                        input_batch.append(infer_transformation(image1))
            input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
            print(input_batch_var.shape)
            preprocessed_data[k] = input_batch_var

        return preprocessed_data

    def _postprocess(self, data):
        results = []
        for k, v in data.items():
            result = torch.argmax(v[0])
            result = {k: self.label[result]}
            results.append(result)
        return results

    def _inference(self, data):

        result = {}
        for k, v in data.items():
            result[k] = self.model(v)

        return result

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden1 = nn.Linear(784, 5120, bias=False)
        self.output = nn.Linear(5120, 10, bias=False)

    def forward(self, x):
        x = x.view(x.size()[0], -1)
        x = F.relu((self.hidden1(x)))
        x = F.dropout(x, 0.2)
        x = self.output(x)
        return F.log_softmax(x)



def Mnist(model_path, **kwargs):
    # 生成网络
    model = Net()
    # 加载模型
    if torch.cuda.is_available():
        device = torch.device('cuda')
        model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
    else:
        device = torch.device('cpu')
        model.load_state_dict(torch.load(model_path, map_location=device))
    # CPU或者GPU映射
    model.to(device)
    # 声明为推理模式
    model.eval()

    return model

相关文档