推理场景介绍
方案概览
本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
约束限制
- 本方案目前仅适用于部分企业客户。
- 本文档适配昇腾云ModelArts 6.3.911版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
- 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。
- 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。
- 支持FP16和BF16数据类型推理。
- 适配的CANN版本是cann_8.0.rc3。
- DevServer驱动版本要求23.0.6。
资源规格要求
本文档中的模型运行环境是ModelArts Lite的DevServer。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。
如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。
镜像版本
本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。
支持的模型列表和权重文件
本方案支持vLLM的v0.6.3版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。
序号 |
模型名称 |
是否支持fp16/bf16推理 |
是否支持W4A16量化 |
是否支持W8A8量化 |
是否支持W8A16量化 |
是否支持 kv-cache-int8量化 |
开源权重获取地址 |
---|---|---|---|---|---|---|---|
1 |
llama-7b |
√ |
√ |
√ |
√ |
√ |
|
2 |
llama-13b |
√ |
√ |
√ |
√ |
√ |
|
3 |
llama-65b |
√ |
√ |
√ |
√ |
√ |
|
4 |
llama2-7b |
√ |
√ |
√ |
√ |
√ |
|
5 |
llama2-13b |
√ |
√ |
√ |
√ |
√ |
|
6 |
llama2-70b |
√ |
√ |
√ |
√ |
√ |
|
7 |
llama3-8b |
√ |
√ |
√ |
√ |
√ |
|
8 |
llama3-70b |
√ |
√ |
√ |
√ |
√ |
|
9 |
yi-6b |
√ |
√ |
√ |
√ |
√ |
|
10 |
yi-9b |
√ |
√ |
√ |
√ |
√ |
|
11 |
yi-34b |
√ |
√ |
√ |
√ |
√ |
|
12 |
deepseek-llm-7b |
√ |
x |
x |
x |
x |
|
13 |
deepseek-coder-33b-instruct |
√ |
x |
x |
x |
x |
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct |
14 |
deepseek-llm-67b |
√ |
x |
x |
x |
x |
|
15 |
qwen-7b |
√ |
√ |
√ |
√ |
x |
|
16 |
qwen-14b |
√ |
√ |
√ |
√ |
x |
|
17 |
qwen-72b |
√ |
√ |
√ |
√ |
x |
|
18 |
qwen1.5-0.5b |
√ |
√ |
√ |
√ |
x |
|
19 |
qwen1.5-7b |
√ |
√ |
√ |
√ |
x |
|
20 |
qwen1.5-1.8b |
√ |
√ |
√ |
√ |
x |
|
21 |
qwen1.5-14b |
√ |
√ |
√ |
√ |
x |
|
22 |
qwen1.5-32b |
√ |
√ |
√ |
√ |
x |
|
23 |
qwen1.5-72b |
√ |
√ |
√ |
√ |
x |
|
24 |
qwen1.5-110b |
√ |
√ |
√ |
√ |
x |
|
25 |
qwen2-0.5b |
√ |
√ |
√ |
√ |
x |
|
26 |
qwen2-1.5b |
√ |
√ |
√ |
√ |
x |
|
27 |
qwen2-7b |
√ |
√ |
x |
√ |
x |
|
28 |
qwen2-72b |
√ |
√ |
√ |
√ |
x |
|
29 |
qwen2.5-0.5b |
√ |
√ |
√ |
√ |
x |
|
30 |
qwen2.5-1.5b |
√ |
√ |
√ |
√ |
x |
|
31 |
qwen2.5-3b |
√ |
√ |
√ |
√ |
x |
|
32 |
qwen2.5-7b |
√ |
√ |
x |
√ |
x |
|
33 |
qwen2.5-14b |
√ |
√ |
√ |
√ |
x |
|
34 |
qwen2.5-32b |
√ |
√ |
√ |
√ |
x |
|
35 |
qwen2.5-72b |
√ |
√ |
√ |
√ |
x |
|
36 |
baichuan2-7b |
√ |
x |
x |
√ |
x |
|
37 |
baichuan2-13b |
√ |
x |
x |
√ |
x |
|
38 |
gemma-2b |
√ |
x |
x |
x |
x |
|
39 |
gemma-7b |
√ |
x |
x |
x |
x |
|
40 |
chatglm2-6b |
√ |
x |
x |
x |
x |
|
41 |
chatglm3-6b |
√ |
x |
x |
x |
x |
|
42 |
glm-4-9b |
√ |
x |
x |
x |
x |
|
43 |
mistral-7b |
√ |
x |
x |
x |
x |
|
44 |
mixtral-8x7b |
√ |
x |
x |
x |
x |
|
45 |
falcon-11b |
√ |
x |
x |
x |
x |
|
46 |
qwen2-57b-a14b |
√ |
x |
x |
x |
x |
|
47 |
llama3.1-8b |
√ |
√ |
√ |
√ |
x |
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct |
48 |
llama3.1-70b |
√ |
√ |
√ |
√ |
x |
https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct |
49 |
llama-3.1-405B |
√ |
√ |
x |
x |
x |
https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4 |
50 |
llama-3.2-1B |
√ |
x |
x |
x |
x |
|
51 |
llama-3.2-3B |
√ |
x |
x |
x |
x |
|
52 |
llava-1.5-7b |
√ |
x |
x |
x |
x |
|
53 |
llava-1.5-13b |
√ |
x |
x |
x |
x |
|
54 |
llava-v1.6-7b |
√ |
x |
x |
x |
x |
https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf/tree/main |
55 |
llava-v1.6-13b |
√ |
x |
x |
x |
x |
https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf/tree/main |
56 |
llava-v1.6-34b |
√ |
x |
x |
x |
x |
|
57 |
internvl2-8B |
√ |
x |
x |
x |
x |
|
58 |
internvl2-26B |
√ |
x |
x |
x |
x |
|
59 |
internvl2-40B |
√ |
x |
x |
x |
x |
|
60 |
internVL2-Llama3-76B |
√ |
x |
x |
x |
x |
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/tree/main |
61 |
MiniCPM-v2.6 |
√ |
x |
x |
x |
x |
|
62 |
deepseek-v2-236b |
x |
x |
√ |
x |
x |
|
63 |
deepseek-v2-lite-16b |
√ |
x |
√ |
x |
x |
|
64 |
qwen2-vl-2B |
√ |
x |
x |
x |
x |
|
65 |
qwen2-vl-7B |
√ |
x |
x |
x |
x |
|
66 |
qwen2-vl-72B |
√ |
x |
x |
x |
x |
|
67 |
qwen-vl |
√ |
x |
x |
x |
x |
|
68 |
qwen-vl-chat |
√ |
x |
x |
x |
x |
|
69 |
MiniCPM-v2 |
√ |
x |
x |
x |
x |
https://huggingface.co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) |
各模型支持的卡数请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明章节。
支持的rope scaling类型
本方案支持的rope scaling类型包括linear、dynamic和yarn,其中linear方法只支持传入一个固定的scaling factor值,暂不支持传入列表。
模型软件包结构说明
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包 ├── build.sh # 推理构建脚本 ├── vllm_install.patch # 社区昇腾适配的补丁包 ├── Dockerfile # 推理构建镜像dockerfile ├── build_image.sh # 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant_ascend # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测 ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字