AI开发平台ModelArtsAI开发平台ModelArts

计算
弹性云服务器 ECS
裸金属服务器 BMS
云手机 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器 HECS
VR云渲游平台 CVR
特惠算力专区
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属企业存储服务
云存储网关 CSG
专属分布式存储服务 DSS
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
园区智能体 CampusGo
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
视频分析服务 VAS
语音交互服务 SIS
知识图谱 KG
人证核身服务 IVS
IoT物联网
设备接入 IoTDA
设备管理 IoTDM(联通用户专用)
全球SIM联接 GSL
IoT开发者服务
IoT数据分析
车联网服务 IoV
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
开发与运维
软件开发平台 DevCloud
项目管理 ProjectMan
代码托管 CodeHub
流水线 CloudPipeline
代码检查 CodeCheck
编译构建 CloudBuild
部署 CloudDeploy
云测 CloudTest
发布 CloudRelease
移动应用测试 MobileAPPTest
CloudIDE
Classroom
开源镜像站 Mirrors
应用魔方 AppCube
云性能测试服务 CPTS
应用管理与运维平台 ServiceStage
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
资源管理服务 RMS
应用身份管理服务 OneAccess
区块链
区块链服务 BCS
可信跨链数据链接服务 TCDAS
智能协作
IdeaHub
开发者工具
SDK开发指南
API签名指南
DevStar
HCloud CLI
Terraform
Ansible
云生态
云市场
合作伙伴中心
华为云培训中心
其他
管理控制台
消息中心
产品价格详情
系统权限
我的凭证
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
应用编排服务 AOS
多云容器平台 MCP
基因容器 GCS
容器洞察引擎 CIE
云原生服务中心 OSC
容器批量计算 BCE
容器交付流水线 ContainerOps
应用服务网格 ASM
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB (for openGauss)
云数据库 GaussDB(for MySQL)
云数据库 GaussDB NoSQL
数据管理服务 DAS
数据库和应用迁移 UGO
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据湖治理中心 DGC
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
API网关 APIG
分布式缓存服务 DCS
分布式消息服务RocketMQ版
企业应用
域名注册服务 Domains
云解析服务 DNS
云速建站 CloudSite
网站备案
华为云WeLink
会议
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMAExchange
API全生命周期管理 ROMA API
安全与合规
安全技术与应用
DDoS防护 ADS
Web应用防火墙 WAF
云防火墙 CFW
应用信任中心 ATC
企业主机安全 HSS
容器安全服务 CGS
云堡垒机 CBH
数据库安全服务 DBSS
数据加密服务 DEW
数据安全中心 DSC
云证书管理服务 CCM
SSL证书管理 SCM
漏洞扫描服务 VSS
态势感知 SA
威胁检测服务 MTD
管理检测与响应 MDR
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
专属云
专属计算集群 DCC
解决方案
高性能计算 HPC
SAP
游戏云
混合云灾备
价格
成本优化最佳实践
专属云商业逻辑
用户服务
帐号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
更新时间:2021/07/27 GMT+08:00
分享

模型调试

训练完成后,可先创建本地模型,在本地调试完成后再部署到推理服务上。推荐使用tensorflow_mlp_mnist_local_mode案例学习,单击如下链接直接进入ModelArts使用。

Run in ModelArts

示例代码

在ModelArts notebook平台中,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权

  1. 将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model/”中,则推理文件“customize_service.py”和模型配置文件“config.json”也保存在该目录中。
  2. 创建模型运行的conda虚拟环境。

    1
    2
    3
    4
    5
    6
    from modelarts.environment import Environment
    
    env = Environment("tensorflow_mlp_mnist")
    cd = CondaDependencies.create(pip_packages=["tensorflow==1.13.1", "Pillow>=8.0.1"],
                                  conda_packages=["python=3.6.2"])
    env.conda = cd
    

  3. 创建本地模型。

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    from modelarts.model import Model
    
    session = Session()
    src_local_path = "/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/"
    model = Model(session,
                  publish=False,
                  source_location_type="LOCAL_SOURCE",         # 模型文件位置类型,
                  source_location=src_local_path + 'model',    # 模型文件位置
                  environment=env,
                  model_version='1.0.1',
                  model_type='TensorFlow',                     # 模型使用的AI框架
                  model_algorithm="image_classification",
                  model_name="tensorflow_mlp_mnist_local_infer")
    

    本地模型创建好后,可以参见服务调试部署为本地服务。

  4. 本地模型创建完,可以调用接口发布模型。

    1
    model.publish_model(obs_location=obs_location)
    

    指定参数“obs_location”后,会将本地的模型文件上传到该目录下。参数可省略,示例如下:

    1
    model.publish_model()
    

    此时模型文件会上传到默认OBS桶以当前时间戳结尾的目录中。该目录会在命令执行后打印出来,示例如下:

    1
    Successfully upload file /home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model to OBS modelarts-cn-north-4-08aae033/model-0107-224502
    

参数说明

表1 创建模型场景参数说明

参数

是否必选

参数类型

描述

session

Object

会话对象,初始化方法见Session鉴权

model_name

String

模型名称,名称只能字母,中文开头,为字母、数字、下划线、中文或者中划线组成的合法字符,支持1-64个字符。若未输入该参数,系统会自动生成模型name。

model_version

String

模型版本,格式需为“数值.数值.数值”,其中数值为1-2位正整数。版本不可以出现以0开头的版本号形式,如“01.01.01”等。

publish

Bool

是否发布模型。可选值:

  • True: 发布模型。(默认值)
  • False: 不发布模型,创建本地模型,可用来调试相关代码

source_location_type

String

模型位置类型。可选值:

  • OBS_SOURCE:source_location为OBS路径。(默认值)
  • LOCAL_SOURCE:source_location为本地路径。

source_location

String

模型文件所在路径,指定到模型文件的父目录。

  • 当source_location_type为OBS_SOURCE时,模型文件所在路径为OBS路径,格式为“/obs_bucketname/.../model_file_parent_dir/”
  • 当source_location_type为LOCAL_SOURCE时,模型文件所在路径为本地路径,格式为“/local_path/.../model_file_parent_dir/”

environment

Environment实例

描述模型正常运行需要的环境,如使用的python版本、tensorflow版本等。请参见表2

source_job_id

String

来源训练作业的ID,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。

source_job_version

String

来源训练作业的版本,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。

source_type

String

模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。

model_type

String

模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。

model_algorithm

String

模型算法,表示模型的算法实现类型,如果已在模型配置文件中配置,则可不填。如:predict_analysis、object_detection 、image_classification。

description

String

模型描述信息,不超过100个字符,且不能包含特殊字符!<>=&’”。

execution_code

String

存放执行脚本的OBS路径。推理脚本必须放于模型所在路径(请参见“source_location”参数)的model目录下,名称固定为:“customize_service.py”

input_params

params结构数组

模型推理输入参数列表,默认为空。如果已在模型配置文件中配置apis信息时,则可不填,后台自动从配置文件的apis字段中读取输入参数信息。

output_params

params结构数组

模型推理输出参数列表,默认为空。如果已在模型配置文件中配置apis信息时,则可不填,后台自动从配置文件的apis字段中读取输出参数信息。

dependencies

dependency结构数组

运行代码及模型需安装的依赖包,默认为空。如果已在模型配置文件中配置dependencies信息时,则可不填,后台自动从配置文件的dependencies字段中读取需要安装的依赖包。

apis

String

模型提供的推理接口列表,默认为空。如果已在模型配置文件中配置apis信息时,则可不填,后台自动从配置文件中的apis字段读取所配置的推理接口信息。

表2 Environment参数说明

参数

是否必选

类型

说明

name

String

环境名称。

conda

CondaDependencies

conda环境,具体请参见表3

表3 CondaDependencies参数说明

参数

是否必选

类型

说明

channels

List

python包的下载源。

pip_packages

List

conda虚拟环境需要使用的python包,如tensorflow,pillow等。

conda_packages

List

conda虚拟环境需要使用的conda包,如指定python版本。

表4 params结构

参数

是否必选

参数类型

描述

url

String

模型推理接口的请求路径。

param_name

String

参数名,不超过64个字符。

param_type

String

JSON Schema基本参数类型,有string、object、array、boolean、number、integer。

min

Double

当param_type为int或float时,可选填,默认为空。

max

Double

当param_type为int或float时,可选填,默认为空。

param_desc

String

参数描述,不超过100个字符,默认为空。

表5 dependency结构

参数

是否必选

参数类型

描述

installer

String

安装方式,当前只支持“pip”

packages

package结构数组

依赖包集合。

表6 package结构

参数

是否必选

参数类型

描述

package_name

String

依赖包名称。

package_version

String

依赖包版本。

restraint

String

版本过滤条件,当且仅当package_version存在时必填。取值为:

  • EXACT:等于给定版本
  • ATLEAST:不小于给定版本
  • ATMOST:不大于给定版本
表7 创建模型返回参数说明

参数

是否必选

参数类型

描述

model

Model对象

模型对象,可以调用本章节模型管理的所有接口。

分享:

    相关文档

    相关产品