文档首页/ AI开发平台ModelArts/ 服务公告/ 产品发布说明/ 昇腾云服务6.3.907版本说明(推荐)
更新时间:2024-10-17 GMT+08:00
分享

昇腾云服务6.3.907版本说明(推荐)

本文档主要介绍昇腾云服务6.3.907版本配套的镜像地址、软件包获取方式和支持的特性能力。

当前版本仅适用于华为公有云。

配套的基础镜像

镜像地址

获取方式

镜像软件说明

配套关系

西南-贵阳一

PyTorch

swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a

MindSpore

swr.cn-southwest-2.myhuaweicloud.com/atelier/mindspore_2_3_ascend:mindspore_2.3.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a

镜像发布到SWR,从SWR拉取

固件驱动:23.0.6

CANN:cann_8.0.rc2

容器镜像OS:hce_2.0

PyTorch:pytorch_2.1.0

MindSpore:MindSpore 2.3.0

FrameworkPTAdapter:6.0.RC2

如果用到CCE,版本要求是CCE Turbo v1.25及以上

软件包获取地址

软件包名称

软件包说明

获取地址

AscendCloud-6.3.907-xxx.zip

包含

  1. 三方大模型训练和推理代码包:AscendCloud-LLM
  2. AIGC代码包:AscendCloud-AIGC
  3. 算子依赖包:AscendCloud-OPP

获取路径:Support-E

说明:

如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。

支持的特性

表1 本版本支持的特性说明

分类

软件包特性说明

参考文档

三方大模型,包名:AscendCloud-LLM

支持如下模型适配PyTorch-NPU的训练(ModelLink)

  1. llama2-7b
  2. llama2-13b
  3. llama2-70b
  4. qwen-7b
  5. qwen-14b
  6. qwen-72b
  7. baichuan2-13b
  8. chatglm3-6b
  9. llama3-8b
  10. llama3-70b
  11. yi-6B
  12. yi-34B
  13. qwen1.5-7B
  14. qwen1.5-14B
  15. qwen1.5-32B
  16. qwen1.5-72B
  17. qwen2-0.5b
  18. qwen2-1.5b
  19. qwen2-7b
  20. qwen2-72b
  21. glm4-9b

支持如下模型适配PyTorch-NPU的训练(LlamaFactory)

  1. llama3-8b
  2. llama3-70b
  3. qwen1.5-0.5b
  4. qwen1.5-1.8b
  5. qwen1.5-4b
  6. qwen1.5-7b
  7. qwen1.5-14b
  8. yi-6b
  9. yi-34b
  10. qwen2-0.5b
  11. qwen2-1.5b
  12. qwen2-7b
  13. qwen2-7b
  14. falcon-11B

LLM开源大模型基于DevServer适配ModelLinkPyTorch NPU训练指导(6.3.907)

LLM开源大模型基于DevServer适配LLamaFactory PyTorch NPU训练指导(6.3.907)

LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)

LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)

支持如下模型适配PyTorch-NPU的推理。

  1. llama-7B
  2. llama-13b
  3. llama-65b
  4. llama2-7b
  5. llama2-13b
  6. llama2-70b
  7. llama3-8b
  8. llama3-70b
  9. yi-6b
  10. yi-9b
  11. yi-34b
  12. deepseek-llm-7b
  13. deepseek-coder-instruct-33b
  14. deepseek-llm-67b
  15. qwen-7b
  16. qwen-14b
  17. qwen-72b
  18. qwen1.5-0.5b
  19. qwen1.5-7b
  20. qwen1.5-1.8b
  21. qwen1.5-14b
  22. qwen1.5-32b
  23. qwen1.5-72b
  24. qwen1.5-110b
  25. qwen2-0.5b
  26. qwen2-1.5b
  27. qwen2-7b
  28. qwen2-72b
  29. baichuan2-7b
  30. baichuan2-13b
  31. chatglm2-6b
  32. chatglm3-6b
  33. glm-4-9b
  34. gemma-2b
  35. gemma-7b
  36. mistral-7b
  37. mixtral 8*7B
  38. falcon2-11b
  39. qwen2-57b-a14b
  40. llama3.1-8b
  41. llama3.1-70b

ascend-vllm支持如下推理特性:

  1. vLLM版本升级至0.5.0

LLM开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907)

LLM开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)

AIGC,包名:AscendCloud-AIGC

支持如下框架或模型基于DevServer的PyTorch NPU推理:

  1. ComfyUI
  2. diffusers
  3. stable-diffusion-webui
  4. LLaVA
  5. Qwen-VL
  6. Wav2Lip
  7. OpenSora1.2
  8. OpenSoraPlan1.0

支持如下框架或模型基于DevServer的PyTorch NPU的训练:

  1. diffusers
  2. koyha_ss
  3. LLaVA
  4. Wav2Lip
  5. OpenSora1.2
  6. OpenSoraPlan1.0

SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.907)

SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.907)

SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907)

SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.907)

Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907)

Wav2Lip基于DevServer适配PyTorch NPU推理指导

Wav2Lip基于DevServer适配PyTorch NPU训练指导

算子,包名:AscendCloud-OPP

  1. Scatter、Gather算子性能提升,满足MoE训练场景
  2. matmul、swiglu、rope等算子性能提升,支持vllm推理场景
  3. 支持random随机数算子,优化FFN算子,满足AIGC等场景
  4. 支持自定义交叉熵融合算子,满足BMTrain框架训练性能要求
  5. 优化PageAttention算子,满足vllm投机推理场景
  6. 支持CopyBlocks算子,满足vllm框架beam search解码场景

相关文档