更新时间:2025-07-29 GMT+08:00
分享

场景介绍

方案概览

本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。

本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。

本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅OBS存储方案。通过OBS对象存储服务(Object Storage Service)与SFS Turbo文件系统联动,可以实现灵活数据管理、高性能读取等。

约束限制

  • 适配的CANN版本是cann_8.0.rc3,驱动版本是23.0.6。
  • 本案例仅支持在专属资源池上运行,确保专属资源池可以访问公网。

文档更新内容

  • 6.3.912版本是第一次发布

支持的模型列表

本方案支持以下模型的训练,如表1所示。

表1 支持的模型列表

序号

支持模型

支持模型参数量

权重文件获取地址

框架

1

Qwen-VL

7b

https://huggingface.co/Qwen/Qwen-VL-Chat

DeepSpeed

操作流程

图1 操作流程图
表2 操作任务流程说明

阶段

任务

说明

准备工作

准备资源

本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。

准备数据

准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。

准备权重

准备所需的权重文件。

准备代码

准备AscendSpeed训练代码。

准备镜像

准备训练模型适用的容器镜像。

微调训练

SFT全参微调

介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。

LoRA微调训练

介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。

相关文档