网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

在推理生产环境中部署推理服务

更新时间:2024-12-17 GMT+08:00
分享

本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。

Step1 准备模型文件和权重文件

在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。

  • 模型权重文件获取地址请参见支持的模型列表和权重文件
    说明:
    • 如果需要部署量化模型,请参考推理模型量化在Notebook中进行权重转换,并将转换后的权重上传至OBS中。
    • 权重文件夹不要以"model"命名,如果以"model"命名会导致后续创建AI应用报错。
  • 推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。
  • SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书
图1 准备模型文件和权重文件

创建推理脚本文件run_vllm.sh

run_vllm.sh脚本示例如下。

  • 方式一:通过OpenAI服务API接口启动服务

    (1)非多模态

    source /home/ma-user/.bashrc
    export ASCEND_RT_VISIBLE_DEVICES=${ASCEND_RT_VISIBLE_DEVICES}
    
    python -m vllm.entrypoints.openai.api_server --model ${model_path} \
    --ssl-keyfile="/home/mind/model/key.pem" \
    --ssl-certfile="/home/mind/model/cert.pem" \
    --max-num-seqs=256 \
    --max-model-len=4096 \
    --max-num-batched-tokens=4096 \
    --tensor-parallel-size=1 \
    --block-size=128 \
    --host=${docker_ip} \
    --port=8080 \
    --gpu-memory-utilization=0.9 \
    --num-scheduler-steps=8 \
    --trust-remote-code \
    --enforce-eager

    (2)llava多模态

    source /home/ma-user/.bashrc
    export ASCEND_RT_VISIBLE_DEVICES=${ASCEND_RT_VISIBLE_DEVICES}
    
    export VLLM_IMAGE_FETCH_TIMEOUT=100
    export VLLM_ENGINE_ITERATION_TIMEOUT_S=600
    # PYTORCH_NPU_ALLOC_CONF优先设置为expandable_segments:True
    # 如果有涉及虚拟显存相关的报错,可设置为expandable_segments:False
    export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
    
    python -m vllm.entrypoints.openai.api_server --model ${container_model_path} \
    --ssl-keyfile="/home/mind/model/key.pem" \
    --ssl-certfile="/home/mind/model/cert.pem" \
    --max-num-seqs=256 \
    --max-model-len=4096 \
    --max-num-batched-tokens=4096 \
    --tensor-parallel-size=1 \
    --block-size=128 \
    --chat-template ${chat_template_path} \
    --dtype ${dtype} \
    --host=${docker_ip} \
    --port=${port} \
    --gpu-memory-utilization=0.9 \
    --trust-remote-code

    多模态推理服务启动模板参数说明如下:

    • VLLM_IMAGE_FETCH_TIMEOUT:图片下载时间环境变量。
    • VLLM_ENGINE_ITERATION_TIMEOUT_S:服务间隔最大时长,超过会报timeout错误。
    • PYTORCH_NPU_ALLOC_CONF=expandable_segments:True:允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。开启时可能提升模型性能。报错则关闭。
    • --chat-template:对话构建模板,可选参数。如:llava chat-template:${vllm_path}/examples/template_llava.jinja
  • 方式二:通过vLLM服务API接口启动服务
    source /home/ma-user/.bashrc
    export ASCEND_RT_VISIBLE_DEVICES=${ASCEND_RT_VISIBLE_DEVICES}
    
    python -m vllm.entrypoints.api_server --model ${model_path} \
    --ssl-keyfile="/home/mind/model/key.pem" \
    --ssl-certfile="/home/mind/model/cert.pem" \
    --max-num-seqs=256 \
    --max-model-len=4096 \
    --max-num-batched-tokens=4096 \
    --tensor-parallel-size=1 \
    --block-size=128 \
    --host=${docker_ip} \
    --port=8080 \
    --gpu-memory-utilization=0.9 \
    --trust-remote-code \
    --enforce-eager

    推理服务基础参数说明如下:

    • ${ASCEND_RT_VISIBLE_DEVICES}:使用的NPU卡,单卡设为0即可,4卡可设为0,1,2,3。
    • ${model_path}:模型路径,填写为/home/mind/model/权重文件夹名称,如:/home/mind/model/chatglm3-6b。
      说明:

      /home/mind/model路径为推理平台固定路径,部署服务时会将Step1 准备模型文件和权重文件OBS路径下的文件传输至/home/mind/model路径下。

    • --tensor-parallel-size:并行卡数。此处举例为1,表示使用单卡启动服务。
    • --host:服务部署的IP,使用本机IP 0.0.0.0。
    • --port:服务部署的端口8080。
    • -max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
    • --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config.json文件中的"seq_length"的值,否则推理预测会报错。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
    • --max-num-batched-tokens:prefill阶段,最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192。
    • --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。使用不同的dtype会影响模型精度。如果使用开源权重,建议不指定dtype,使用开源权重默认的dtype。
    • --block-size:kv-cache的block大小,推荐设置为128。当前仅支持64和128。
    • --num-scheduler-steps:默认为1,推荐设置为8。用于mult-step调度。每次调度生成多个token,可以降低时延。开启multi-step后,在流式返回中,会一次返回num-scheduler-steps个token。开启投机推理后无需配置该参数。
    • --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。
    • --trust-remote-code:是否相信远程代码。
    • --distributed-executor-backend:多卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示使用ray进行启动多卡推理,"mp"表示使用python多进程进行启动多卡推理。默认使用"mp"后端启动多卡推理。
    • --enforce-eager:未设置INFER_MODE环境变量时,部分模型会默认使用CANNGraph图模式启动来提升性能,设置该参数后将关闭图模式。CANNGraph图模式目前支持llama和qwen2系列大语言模型单卡场景,包含该系列AWQ量化模型,其他场景(如Multi-lora)暂未支持。小模型如Qwen2-1.5B和Qwen2-0.5B推荐不设置该参数。
    • --disable-async-output-proc:关闭异步后处理特性,关闭后性能会下降。
    注意:
    • 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。
    • hostname和port也必须分别是0.0.0.0和8080不可更改。
    高阶参数说明:
    • --enable-prefix-caching:如果prompt的公共前缀较长或者多轮对话场景下推荐使用prefix-caching特性。在推理服务启动脚本中添加此参数表示使用prefix-caching特性,不添加表示不使用。开启该特性后,如果模型长度>8192,则需要在启动推理服务前添加如下环境变量降低显存占用;否则在长序列的推理中会触发Out of Memory,导致推理服务不可用。
      export USE_PREFIX_HIGH_PRECISION_MODE=1
    • 如果需要使用multi-lora特性;需要在推理服务启动命令中额外添加如下命令。
      --enable-lora \
      --lora-modules lora1=/path/to/lora/adapter1/ lora2=/path/to/lora/adapter2/ \
      --max-lora-rank=16 \
      --max-loras=32 \
      --max-cpu-loras=32

      --enable-lora表示开启lora挂载。

      --lora-modules后面添加挂载的lora列表,要求lora地址权重是huggingface格式,当前支持QKV-proj、O-proj、gate_up_proj、down_proj模块的挂载。

      --max-lora-rank表示挂载lora的最大rank数量,支持8、16、32、64。

      --max-loras 表示支持的最大lora个数,最大32。

      --max-cpu-loras要求配置和--max-loras相同。

      发请求时model指定为lora1或者lora2即为LoRA推理。

    • --quantization:推理量化参数。当使用量化功能,则在推理服务启动脚本中增加该参数,如果未使用量化功能,则无需配置。根据使用的量化方式配置,可选择awqsmoothquant或者GPTQ方式。
    • --speculative-model ${container_draft_model_path}:投机草稿模型地址,模型格式是HuggingFace的目录格式。即Step1 准备模型文件和权重文件上传的HuggingFace权重文件存放目录。投机草稿模型为与--model入参同系列,但是权重参数远小于--model指定的模型。如果未使用投机推理功能,则无需配置。
    • --num-speculative-tokens:投机推理小模型每次推理的token数。如果未使用投机推理功能,则无需配置。参数--num-speculative-tokens需要和--speculative-model ${container_draft_model_path}同时使用。
    • --use-v2-block-manager:vllm启动时使用V2版本的BlockSpaceManger来管理KVCache索引,如果不使用该功能,则无需配置。注意:如果使用投机推理功能,必须开启此参数。
    • --served-model-name:vllm服务后台id。

    可在run_vllm.sh增加如下环境变量开启高阶配置:

    1. 配置环境变量。
      export USE_PFA_HIGH_PRECISION_MODE=1
      # PFA算子(全量prefill阶段的flash-attention)是否使用高精度模式;默认值为1表示开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则精度会异常;其他模型不建议开启,会影响首token时延增加5%~10%。
      
      export USE_IFA_HIGH_PRECISION_MODE=1
      # IFA算子(增量decode阶段的flash-attention)是否使用高精度模式;默认值为0表示不开启。针对Qwen2-7B、Qwen2-57b、Qwen2-72B,在长序列下需要开启,否则会有概率性精度异常;其他模型不建议开启,会影响增量时延增加5%~10%。
      
      export USE_PREFIX_HIGH_PRECISION_MODE=1
      # 针对Qwen2-7B、Qwen2-72B模型,在开启prefix-caching时,需要同时使用带有prefix-caching的高精度attention算子避免精度异常。需要和prefix-caching特性一起使用,如果不使用prefix-caching特性则不配置该环境变量。
    2. 如果要开启图模式,请配置以下5个环境变量,并且启动服务时不要添加enforce-eager参数。
      export INFER_MODE=PTA  # 开启PTA模式,如果不使用图模式,请关闭该环境变量
      export PTA_TORCHAIR_DECODE_GEAR_ENABLE=1   # 开启动态分档功能
      export PTA_TORCHAIR_DECODE_GEAR_LIST=2,4,6,8,16,32    # 设置动态分档的档位,根据实际情况设置,另外请不要设置档位1(DeepSeek V2 236B W8A8 模型建议最大设置4个档位)
      export VLLM_ENGINE_ITERATION_TIMEOUT_S=1500    # 设置vllm请求超时时间(DeepSeek V2 236B W8A8 模型建议调大为6000)
      export HCCL_OP_EXPANSION_MODE=AIV    #可选

      通过PTA_TORCHAIR_DECODE_GEAR_LIST设置动态分档位后,在PTA模式下,会根据服务启动时的max_num_seqs参数对档位进行调整,使得最终的最大档位为max_num_seqs,因此,请根据使用场景合理设置动态分档以及max_num_seqs参数,避免档位过大导致图编译错误。

      在MoE模型上推荐使用图模式部署,包括mixtral-8x7B、qwen2-57B、deepseek-v2-lite-16B、deepseek-v2-236B-W8A8。当前MoE模型图模式启动不支持multi step。

      MoE模型依赖MindSpeed,当使用MoE模型推理时,需提前安装:

      git clone https://gitee.com/ascend/MindSpeed.git
      cd MindSpeed
      git checkout a956b907ef3b0787d2a38577eb5b702f5b7e715d #推荐commit
      pip install -e .

      开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除.torchair_cache文件夹,避免由于缓存文件与实际推理不匹配而报错。

    3. 如果要使用eagle投机,配置环境变量,使eagle投机对齐实验室版本实现。目前默认开启此模式,如果不开启,目前vllm0.6.3版本与实验室版本权重无法对齐,会导致小模型精度问题。
      export EAGLE_USE_SAFE_AI_LAB_STYLE=1  # eagle投机对基于 https://github.com/SafeAILab/EAGLE/ 版本实现
      如果需要使用eagle投机推理功能,需要进入 lm_tools/spec_decode/EAGLE 文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为
      python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名

      具体可参考Eagle投机小模型训练章节步骤五:训练生成权重转换成可以支持vLLM推理的格式

Step2 部署模型

在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。

  1. 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。
    图2 创建AI应用
  2. 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型
    • 根据需要自定义应用的名称和版本。
    • 模型来源选择“从对象存储服务(OBS)中选择”,元模型选择转换后模型的存储路径,AI引擎选择“Custom”,引擎包选择准备镜像中上传的推理镜像。
    • 系统运行架构选择“ARM”
    图3 设置AI应用
  3. 单击“立即创建”开始AI应用创建,待应用状态显示“正常”即完成AI应用创建。
    首次创建AI应用预计花费40~60分钟,之后每次构建AI应用花费时间预计5分钟。
    图4 创建完成
    说明:

    如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。

Step3 部署在线服务

Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。

  1. 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。
    图5 部署在线服务
  2. 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择snt9b,部署超时时间建议设置为40分钟。此处仅介绍关键参数,更多详细参数解释请参见部署在线服务
    图6 部署在线服务-专属资源池
  3. 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。
    图7 服务部署完成

Step4 调用在线服务

进入在线服务详情页面,选择“预测”

如果以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt": "你好", "temperature":0, "max_tokens":20}”,单击“预测”即可看到预测结果。

图8 预测-vllm

如果以openai接口启动服务,设置请求路径:“/v1/completions”,输入预测代码“{"prompt": "你是谁","model": "${model_path}","max_tokens": 50,"temperature":0}”,单击“预测”即可看到预测结果。

图9 预测-openai

在线服务的更多内容介绍请参见文档查看服务详情

Step5 推理性能测试

推理性能测试操作请参见推理性能测试

提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容