更新时间:2024-10-29 GMT+08:00
分享

指令监督微调训练任务

Step1 上传训练权重文件和数据集

如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。

Step2 修改训练yaml文件配置

LlamaFactroy配置文件为yaml文件,启动训练前需修改yaml配置文件,yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示:

  1. 选择指令微调类型

  2. 修改yaml文件(demo.yaml)的参数如表1所示

    表1 修改重要参数

    参数

    示例值

    参数说明

    model_name_or_path

    /home/ma-user/ws/tokenizers/Qwen2-72B

    必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。

    template

    qwen

    必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template

    output_dir

    /home/ma-user/ws/Qwen2-72B/sft-4096

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。

    per_device_train_batch_size

    1

    指定每个设备的训练批次大小

    gradient_accumulation_steps

    8

    指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配

    num_train_epochs

    5

    表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配

    cutoff_len

    4096

    文本处理时的最大长度,此处为4096,用户可根据自己要求适配。

    dataset

    identity,alpaca_en_demo

    可选】指定用于训练的数据集,数据集都放置在此处为identity,alpaca_en_demo表示使用了两个数据集,一个是 identity,一个是alpaca_en_demo。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件

    dataset_dir

    /home/ma-user/ws/LLaMAFactory/LLaMA-Factory/data

    可选】自定义数据集dataset_info.json配置文件绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。

  3. 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架

    • 是,选用ZeRO (Zero Redundancy Optimizer)优化器
      • ZeRO-0,配置以下参数
        deepspeed: examples/deepspeed/ds_z0_config.json
      • ZeRO-1,配置以下参数,并复制ds_z1_config.json样例模板至工作目录/home/ma-user/LLaMAFactory/LLaMA-Factory/examples/deepspeed
        deepspeed: examples/deepspeed/ds_z1_config.json
      • ZeRO-2,配置以下参数
        deepspeed: examples/deepspeed/ds_z2_config.json
      • ZeRO-3,配置以下参数
        deepspeed: examples/deepspeed/ds_z3_config.json
    • 否,默认选用Accelerate加速深度学习训练框架,注释掉deepspeed参数。

  4. 是否使用固定句长

    • 是,配置以下参数
      packing: true
    • 否,默认使用动态句长,注释掉packing参数。

  5. 选用数据精度格式,以下参数二选一。

    • bf16,配置以下参数
      bf16: true
    • fp16,配置以下参数
      fp16: true

  6. 是否使用自定义数据集

    • 是,参考准备数据(可选)后,填写自定义注册后数据集前缀名称及数据集绝对路径,参考表1dataset_dir行,如demo.json数据集前缀则为demo
      dataset: demo
      dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data 
    • 否,使用代码包自带数据集,配置参数如
      dataset: identity,alpaca_en_demo

  7. 如需其他配置参数,可参考表1按照实际需求修改

Step3 启动训练脚本

  • 启动训练前修改启动训练脚本demo.sh 内容。具体请参考•修改启动脚本
  • 对于falcon-11B训练任务开始前,需手动替换tokenizer中的config.json,具体请参见falcon-11B模型

修改完yaml配置文件后,启动训练脚本;模型不同最少npu卡数不同,npu卡数建议值可参考模型NPU卡数取值表

  • 修改启动脚本

进入代码目录{work_dir}/llm_train/LLaMAFactory 修改启动脚本,其中{work_dir}为容器挂载路径;修改demo.sh 最后一行代码:

将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,例如将以下命令:

FORCE_TORCHRUN=1 llamafactory-cli train /data/openllm_gy1/user/lmz/poc_package/LLaMAFactory/demo.yaml

修改为:

FORCE_TORCHRUN=1 llamafactory-cli train  /home/ma-user/ws/llm_train/LLaMAFactory/demo.yaml
  • 多机启动

多台机器执行训练启动命令如下。

多机执行命令为:sh demo.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0>
示例:
#第一台节点
sh demo.sh  xx.xx.xx.xx  4  0
# 第二台节点 
sh demo.sh  xx.xx.xx.xx  4  1
# 第三台节点 
sh demo.sh  xx.xx.xx.xx  4  2
# 第四台节点 
sh demo.sh  xx.xx.xx.xx  4  3

以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、 NODE_RANK、 NODE_RANK为必填。

  • 单机启动

一般小于等于14B模型可选择单机启动,操作过程与多机启动相同,只需修改对应参数即可,可以选用单机启动。

进入代码目录/home/ma-user/ws/llm_train/LLaMAFactory下执行启动脚本,先修改以下命令中的参数,再复制执行。

# 单机执行命令为:sh  demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0>
sh demo.sh localhost 1 0

单机如需指定训练卡数训练可使用ASCEND_RT_VISIBLE_DEVICES变量指定挂载到容器里面的卡的索引,使用执行命令如下:

ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 sh demo.sh localhost 1 0

其中ASCEND_RT_VISIBLE_DEVICES=0,1,2,3指使用0-3卡执行训练任务

  • 训练成功标志

***** train metrics *****”关键字打印

训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。

1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:指令微调训练常见问题解决

2、训练中遇到"ImportError: This modeling file requires the following packages that were not found in your environment: flash_attn. Run `pip install flash_attn`"请参考附录:指令微调训练常见问题问题3小节。

3、训练过程中报"ModuleNotFoundError: No module named 'multipart'"关键字异常,可更新python-multipart为0.0.12版本,具体请参考问题4:"No module named 'multipart'"报错:

相关文档