查询超参搜索所有trial的结果
功能介绍
查询超参搜索所有trial的结果。
调试
您可以在API Explorer中调试该接口。
URI
GET /v2/{project_id}/training-jobs/{training_job_id}/autosearch-trials
参数 |
是否必选 |
参数类型 |
描述 |
---|---|---|---|
project_id |
是 |
String |
用户项目ID。获取方法请参见获取项目ID。 |
training_job_id |
是 |
String |
训练作业ID。 |
参数 |
是否必选 |
参数类型 |
描述 |
---|---|---|---|
limit |
否 |
Integer |
指定每一页返回的最大条目数,取值范围[1,50],默认为50。 最小值:1 最大值:50 缺省值:50 |
offset |
否 |
Integer |
分页列表的起始页,默认为0。 最小值:0 缺省值:0 |
请求参数
无
响应参数
状态码: 200
参数 |
参数类型 |
描述 |
---|---|---|
total |
Integer |
超参搜索所有trial结果的个数。 |
count |
Integer |
超参搜索所有trial结果的当前页展示个数。 |
limit |
Integer |
超参搜索所有trial结果的当前页展示个数最大值。 |
offset |
Integer |
超参搜索所有trial结果的当前页数。 |
items |
items object |
超参搜索列表。 |
请求示例
如以下查询training_job_id为5b60a667-1438-4eb5-9705-85b860e623dc的作业的所有trial的信息。
GET https://endpoint/v2/{project_id}/training-jobs/5b60a667-1438-4eb5-9705-85b860e623dc/autosearch-trials
响应示例
状态码: 200
ok
{ "total" : 8, "count" : 8, "limit" : 50, "offset" : 0, "group_by" : "", "items" : { "header" : [ "", "done", "pid", "config", "trial_id", "training_iteration", "time_total_s", "worker_index", "reward_attr", "status", "acc", "loss", "best_reward" ], "data" : [ [ "0", "True", "314", "{'batch_size': 32, 'learning_rate': 0.05512301741232006, 'trial_index': 0, 'param/batch_size': 32, 'param/learning_rate': 0.05512301741232006}", "ae544174", "2", "19.477163314819336", "", "0.0625", "TERMINATED", "0.0625", "tensor(0.0754, device='cuda:0', requires_grad=True)", "0.0625" ], [ "1", "True", "315", "{'batch_size': 32, 'learning_rate': 0.0785570955603036, 'trial_index': 1, 'param/batch_size': 32, 'param/learning_rate': 0.0785570955603036}", "ae548666", "2", "3.601897954940796", "", "0.0", "TERMINATED", "0.0", "tensor(0.0760, device='cuda:0', requires_grad=True)", "0.0" ], [ "2", "True", "312", "{'batch_size': 16, 'learning_rate': 0.04015387428829642, 'trial_index': 2, 'param/batch_size': 16, 'param/learning_rate': 0.04015387428829642}", "ae54c0ea", "2", "3.5978384017944336", "", "0.1875", "TERMINATED", "0.1875", "tensor(0.1469, device='cuda:0', requires_grad=True)", "0.1875" ], [ "3", "True", "313", "{'batch_size': 32, 'learning_rate': 0.0340820322164706, 'trial_index': 3, 'param/batch_size': 32, 'param/learning_rate': 0.0340820322164706}", "ae5503c0", "2", "3.641200304031372", "", "0.25", "TERMINATED", "0.25", "tensor(0.0716, device='cuda:0', requires_grad=True)", "0.25" ], [ "4", "True", "470", "{'batch_size': 32, 'learning_rate': 0.03656488928171769, 'trial_index': 4, 'param/batch_size': 32, 'param/learning_rate': 0.03656488928171769}", "bef46590", "2", "3.6120550632476807", "", "0.09375", "TERMINATED", "0.09375", "tensor(0.0740, device='cuda:0', requires_grad=True)", "0.09375" ], [ "5", "True", "499", "{'batch_size': 32, 'learning_rate': 0.008413169003970163, 'trial_index': 5, 'param/batch_size': 32, 'param/learning_rate': 0.008413169003970163}", "bef578f4", "2", "3.6379287242889404", "", "0.1875", "TERMINATED", "0.1875", "tensor(0.0723, device='cuda:0', requires_grad=True)", "0.1875" ], [ "6", "True", "528", "{'batch_size': 64, 'learning_rate': 0.06297447200613912, 'trial_index': 6, 'param/batch_size': 64, 'param/learning_rate': 0.06297447200613912}", "bef5c584", "2", "3.711118221282959", "", "0.046875", "TERMINATED", "0.046875", "tensor(0.0381, device='cuda:0', requires_grad=True)", "0.046875" ], [ "7", "True", "557", "{'batch_size': 32, 'learning_rate': 0.04426479392014276, 'trial_index': 7, 'param/batch_size': 32, 'param/learning_rate': 0.04426479392014276}", "bef60684", "2", "3.6971280574798584", "", "0.0625", "TERMINATED", "0.0625", "tensor(0.0778, device='cuda:0', requires_grad=True)", "0.0625" ] ] } }
状态码
状态码 |
描述 |
---|---|
200 |
ok |
错误码
请参见错误码。
