更新时间:2024-11-21 GMT+08:00
分享

准备代码

本教程中用到的训练推理代码和如下表所示,请提前准备好。

获取模型软件包

本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。

表1 模型对应的软件包和依赖包获取地址

代码包名称

代码说明

下载地址

AscendCloud-6.3.910-xxx.zip

说明:

软件包名称中的xxx表示时间戳。

包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明

获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。

说明:

如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。

获取模型权重文件

表2 支持的模型列表

序号

支持模型

支持模型参数量

权重文件获取地址

1

llama2

llama2-7b

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

2

llama2-13b

https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

3

llama2-70b

https://huggingface.co/meta-llama/Llama-2-70b-hf

https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐)

4

llama3

llama3-8b

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

5

llama3-70b

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

6

Qwen

qwen-7b

https://huggingface.co/Qwen/Qwen-7B-Chat

7

qwen-14b

https://huggingface.co/Qwen/Qwen-14B-Chat

8

qwen-72b

https://huggingface.co/Qwen/Qwen-72B-Chat

9

Qwen1.5

qwen1.5-7b

https://huggingface.co/Qwen/Qwen1.5-7B-Chat

10

qwen1.5-14b

https://huggingface.co/Qwen/Qwen1.5-14B-Chat

11

qwen1.5-32b

https://huggingface.co/Qwen/Qwen1.5-32B-Chat

12

qwen1.5-72b

https://huggingface.co/Qwen/Qwen1.5-72B-Chat

13

Yi

yi-6b

https://huggingface.co/01-ai/Yi-6B-Chat

14

yi-34b

https://huggingface.co/01-ai/Yi-34B-Chat

15

ChatGLMv3

glm3-6b

https://huggingface.co/THUDM/chatglm3-6b

16

Baichuan2

baichuan2-13b

https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat

17

Qwen2

qwen2-0.5b

https://huggingface.co/Qwen/Qwen2-0.5B-Instruct

18

qwen2-1.5b

https://huggingface.co/Qwen/Qwen2-1.5B-Instruct

19

qwen2-7b

https://huggingface.co/Qwen/Qwen2-7B-Instruct

20

qwen2-72b

https://huggingface.co/Qwen/Qwen2-72B-Instruct

21

GLMv4

glm4-9b

https://huggingface.co/THUDM/glm-4-9b-chat

说明:

glm4-9b模型必须使用版本4b556ad4d70c38924cb8c120adbf21a0012de6ce

22

mistral

mistral-7b

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

23

mixtral

mixtral-8x7b

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

24

llama3.1

llama3.1-8b

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

25

llama3.1-70b

https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct

26

Qwen2.5

qwen2.5-0.5b

https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

27

qwen2.5-7b

https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

28

qwen2.5-14b

https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

29

qwen2.5-32b

https://huggingface.co/Qwen/Qwen2.5-32B-Instruct

30

qwen2.5-72b

https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

31

llama3.2

llama3.2-1b

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

32

llama3.2-3b

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

权重文件下载有如下几种方式,但不仅限于以下方式:

  • 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。
  • 方法二:huggingface-clihuggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
    huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf --local-dir <模型下载路径>

    如果要下载指定版本的模型文件,则命令如下:

    huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf --revision <模型版本>  --local-dir <模型下载路径>
  • 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。
  • 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。

模型软件包结构说明

本教程需要使用到的AscendCloud-6.3.910中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。
|——AscendCloud-LLM
    |──llm_train                 # 模型训练代码包
          |──AscendSpeed         # 基于AscendSpeed的训练代码
                 |──ascendcloud_patch/   # 针对昇腾云平台适配的功能补丁包
                 |──scripts/             # 训练需要的启动脚本
                      |──llama2          # llama2系列模型执行脚本的文件夹
                      |──llama3          # llama3系列模型执行脚本的文件夹
                      |──qwen            # Qwen系列模型执行脚本的文件夹
                      |──qwen1.5         # Qwen1.5系列模型执行脚本的文件夹
                      |── ...
                      |── dev_pipeline.sh  # 系列模型共同调用的多功能的脚本
                      |── install.sh       # 环境部署脚本
                 |——src/                 # 启动命令行封装脚本,在install.sh里面自动构建
    |──llm_inference                     # 推理代码包
    |──llm_tools                        # 推理工具

工作目录介绍

详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。
${workdir}(例如/home/ma-user/ws )
|──llm_train                    #解压代码包后自动生成的代码目录,无需用户创建
      |── AscendSpeed              # 代码目录
              |──ascendcloud_patch/   # 针对昇腾云平台适配的功能代码包
              |──scripts/             # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。
      # 自动生成数据目录结构
      |── processed_for_input           #目录结构会自动生成,无需用户创建
              |── ${model_name}             # 模型名称
                     |── data              # 预处理后数据
		          |── pretrain   # 预训练加载的数据
		          |── finetune   # 微调加载的数据
	      |──converted_weights  # HuggingFace格式转换megatron格式后权重文件
      |── saved_dir_for_output            # 训练输出保存权重,目录结构会自动生成,无需用户创建
              |── ${model_name}             # 模型名称
	                  |── logs              # 训练过程中日志(loss、吞吐性能)
                          |—— saved_models    
		               |── lora              # lora微调输出权重
		               |── sft               # 增量训练输出权重
		               |── pretrain          # 预训练输出权重
|── tokenizers                      #tokenizer目录,需要用户手动创建,后续操作步骤中会提示
      |── Llama2-70B
|── models                          #始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示
      |── Llama2-70B
|── training_data                   #原始数据目录,需要用户手动创建,后续操作步骤中会提示
      |── train-00000-of-00001-a09b74b3ef9c3b56.parquet  #原始数据文件
      |── alpaca_gpt4_data.json     #微调数据文件

上传代码和权重文件到工作环境

  1. 使用root用户以SSH的方式登录Server。
  2. 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。
    unzip AscendCloud-*.zip  
  3. 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。

    具体步骤如下:

    进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。

    cd /home/ma-user/ws
    mkdir -p tokenizers/Llama2-70B

多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。

相关文档