- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
ModelArts用户指南(Standard)
- ModelArts Standard使用流程
- ModelArts Standard准备工作
- ModelArts Standard资源管理
- 使用自动学习实现零代码AI开发
- 使用Workflow实现低代码AI开发
- 使用Notebook进行AI开发调试
- 数据准备与处理
- 使用ModelArts Standard训练模型
- 使用ModelArts Standard部署模型并推理预测
- 制作自定义镜像用于ModelArts Standard
- ModelArts Standard资源监控
- 使用CTS审计ModelArts服务
- ModelArts用户指南(Studio)
- ModelArts用户指南(Lite Server)
- ModelArts用户指南(Lite Cluster)
- ModelArts用户指南(AI Gallery)
-
最佳实践
- ModelArts最佳实践案例列表
- 昇腾能力应用地图
- DeepSeek系列模型推理
-
LLM大语言模型训练推理
- 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类
- 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
- 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
- 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
- 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
-
MLLM多模态模型训练推理
- Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912)
- Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909)
- MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912)
- MiniCPM-V2.0推理及LoRA微调基于Lite Server适配PyTorch NPU指导(6.3.910)
- InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912)
- LLaVA-NeXT基于Lite Server适配PyTorch NPU训练微调指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU预训练指导(6.3.912)
- LLaVA模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
- Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912)
- LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910)
- moondream2基于Lite Server适配PyTorch NPU推理指导
-
文生图模型训练推理
- FlUX.1基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911)
- Hunyuan-DiT基于Lite Server部署适配PyTorch NPU推理指导(6.3.909)
- SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912)
- SD3基于Lite Server适配PyTorch NPU的训练指导(6.3.912)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912)
- SD1.5&SDXL Diffusers框架基于Lite Server适配PyTorch NPU训练指导(6.3.908)
- SD1.5&SDXL Kohya框架基于DevServer适配PyTorch NPU训练指导(6.3.908)
- SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908)
- SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907)
- SDXL&SD1.5 ComfyUI基于Lite Cluster适配NPU推理指导(6.3.906)
- SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.905)
- SDXL基于Lite Server适配PyTorch NPU的LoRA训练指导(6.3.905)
- SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904)
- Open-Clip基于Lite Server适配PyTorch NPU训练指导
- AIGC工具tailor使用指导
- 文生视频模型训练推理
- 数字人模型训练推理
- 内容审核模型训练推理
- GPU业务迁移至昇腾训练推理
- Standard权限管理
- Standard自动学习
- Standard开发环境
- Standard模型训练
- Standard推理部署
- 历史待下线案例
-
API参考
- 使用前必读
- API概览
- 如何调用API
-
Workflow工作流管理
- 获取Workflow工作流列表
- 新建Workflow工作流
- 删除Workflow工作流
- 查询Workflow工作流
- 修改Workflow工作流
- 总览Workflow工作流
- 查询Workflow待办事项
- 在线服务鉴权
- 创建在线服务包
- 获取Execution列表
- 新建Workflow Execution
- 删除Workflow Execution
- 查询Workflow Execution
- 更新Workflow Execution
- 管理Workflow Execution
- 管理Workflow StepExecution
- 获取Workflow工作流节点度量信息
- 新建消息订阅Subscription
- 删除消息订阅Subscription
- 查询消息订阅Subscription详情
- 更新消息订阅Subscription
- 创建工作流定时调度
- 查询工作流定时调度详情
- 删除工作流定时调度信息
- 更新工作流定时调度信息
-
开发环境管理
- 创建Notebook实例
- 查询Notebook实例列表
- 查询所有Notebook实例列表
- 查询Notebook实例详情
- 更新Notebook实例
- 删除Notebook实例
- 通过运行的实例保存成容器镜像
- 查询Notebook支持的有效规格列表
- 查询Notebook支持的可切换规格列表
- 查询运行中的Notebook可用时长
- Notebook时长续约
- 启动Notebook实例
- 停止Notebook实例
- 获取动态挂载OBS实例信息列表
- 动态挂载OBS
- 获取动态挂载OBS实例详情
- 动态卸载OBS
- 添加资源标签
- 删除资源标签
- 查询Notebook资源类型下的标签
- 查询支持的镜像列表
- 注册自定义镜像
- 查询用户镜像组列表
- 查询镜像详情
- 删除镜像
-
训练管理
- 创建算法
- 查询算法列表
- 查询算法详情
- 更新算法
- 删除算法
- 获取支持的超参搜索算法
- 创建训练实验
- 创建训练作业
- 查询训练作业详情
- 更新训练作业描述
- 删除训练作业
- 终止训练作业
- 查询训练作业指定任务的日志(预览)
- 查询训练作业指定任务的日志(OBS链接)
- 查询训练作业指定任务的运行指标
- 查询训练作业列表
- 查询超参搜索所有trial的结果
- 查询超参搜索某个trial的结果
- 获取超参敏感度分析结果
- 获取某个超参敏感度分析图像的路径
- 提前终止自动化搜索作业的某个trial
- 获取自动化搜索作业yaml模板的信息
- 获取自动化搜索作业yaml模板的内容
- 创建训练作业标签
- 删除训练作业标签
- 查询训练作业标签
- 获取训练作业事件列表
- 创建训练作业镜像保存任务
- 查询训练作业镜像保存任务
- 获取训练作业支持的公共规格
- 获取训练作业支持的AI预置框架
- AI应用管理
- APP认证管理
- 服务管理
- 资源管理
- DevServer管理
- 授权管理
- 工作空间管理
- 配额管理
- 资源标签管理
- 节点池管理
- 应用示例
- 权限策略和授权项
- 公共参数
-
历史API
-
数据管理(旧版)
- 查询数据集列表
- 创建数据集
- 查询数据集详情
- 更新数据集
- 删除数据集
- 查询数据集的统计信息
- 查询数据集监控数据
- 查询数据集的版本列表
- 创建数据集标注版本
- 查询数据集版本详情
- 删除数据集标注版本
- 查询样本列表
- 批量添加样本
- 批量删除样本
- 查询单个样本信息
- 获取样本搜索条件
- 分页查询团队标注任务下的样本列表
- 查询团队标注的样本信息
- 查询数据集标签列表
- 创建数据集标签
- 批量修改标签
- 批量删除标签
- 按标签名称更新单个标签
- 按标签名称删除标签及仅包含此标签的文件
- 批量更新样本标签
- 查询数据集的团队标注任务列表
- 创建团队标注任务
- 查询团队标注任务详情
- 启动团队标注任务
- 更新团队标注任务
- 删除团队标注任务
- 创建团队标注验收任务
- 查询团队标注验收任务报告
- 更新团队标注验收任务状态
- 查询团队标注任务统计信息
- 查询团队标注任务成员的进度信息
- 团队成员查询团队标注任务列表
- 提交验收任务的样本评审意见
- 团队标注审核
- 批量更新团队标注样本的标签
- 查询标注团队列表
- 创建标注团队
- 查询标注团队详情
- 更新标注团队
- 删除标注团队
- 向标注成员发送邮件
- 查询所有团队的标注成员列表
- 查询标注团队的成员列表
- 创建标注团队的成员
- 批量删除标注团队成员
- 查询标注团队成员详情
- 更新标注团队成员
- 删除标注团队成员
- 查询数据集导入任务列表
- 创建导入任务
- 查询数据集导入任务的详情
- 查询数据集导出任务列表
- 创建数据集导出任务
- 查询数据集导出任务的状态
- 同步数据集
- 查询数据集同步任务的状态
- 查询智能标注的样本列表
- 查询单个智能标注样本的信息
- 分页查询智能任务列表
- 启动智能任务
- 获取智能任务的信息
- 停止智能任务
- 查询处理任务列表
- 创建处理任务
- 查询数据处理的算法类别
- 查询处理任务详情
- 更新处理任务
- 删除处理任务
- 查询数据处理任务的版本列表
- 创建数据处理任务版本
- 查询数据处理任务的版本详情
- 删除数据处理任务的版本
- 查询数据处理任务版本的结果展示
- 停止数据处理任务的版本
- 开发环境(旧版)
- 训练管理(旧版)
-
数据管理(旧版)
- SDK参考
- 场景代码示例
-
故障排除
- 通用问题
- 自动学习
-
开发环境
- 环境配置故障
- 实例故障
- 代码运行故障
- JupyterLab插件故障
-
VS Code连接开发环境失败故障处理
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口
- 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接
- VS Code连接开发环境失败时的排查方法
- 远程连接出现弹窗报错:Could not establish connection to xxx
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决?
- 连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决?
- 远程连接处于retry状态如何解决?
- 报错“The VS Code Server failed to start”如何解决?
- 报错“Permissions for 'x:/xxx.pem' are too open”如何解决?
- 报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”如何解决?
- 报错“Connection permission denied (publickey)”如何解决
- 报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决?
- 报错"ssh: connect to host ModelArts-xxx port xxx: Connection timed out"如何解决?
- 报错“Load key "C:/Users/xx/test1/xxx.pem": invalid format”如何解决?
- 报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决?
- 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决?
- 报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决?
- 报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exiting now.”如何解决?
- VS Code连接远端Notebook时报错“XHR failed”
- VS Code连接后长时间未操作,连接自动断开
- VS Code自动升级后,导致远程连接时间过长
- 使用SSH连接,报错“Connection reset”如何解决?
- 使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决?
- VS Code连接开发环境时报错Missing GLIBC,Missing required dependencies
- 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题
- 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
- VSCode远程连接时卡顿,或Python调试插件无法使用如何处理?
-
自定义镜像故障
- Notebook自定义镜像故障基础排查
- 镜像保存时报错“there are processes in 'D' status, please check process status using 'ps -aux' and kill all the 'D' status processes”或“Buildimge,False,Error response from daemon,Cannot pause container xxx”如何解决?
- 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决?
- 保存镜像时报错“too many layers in your image”如何解决?
- 镜像保存时报错“The container size (xG) is greater than the threshold (25G)”如何解决?
- 镜像保存时报错“BuildImage,True,Commit successfully|PushImage,False,Task is running.”
- 使用自定义镜像创建Notebook后打开没有kernel
- 用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决?
- 用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found)
- 用户使用torch报错Unexpected error from cudaGetDeviceCount
- 其他故障
-
训练作业
- OBS操作相关故障
-
云上迁移适配故障
- 无法导入模块
- 训练作业日志中提示“No module named .*”
- 如何安装第三方包,安装报错的处理方法
- 下载代码目录失败
- 训练作业日志中提示“No such file or directory”
- 训练过程中无法找到so文件
- ModelArts训练作业无法解析参数,日志报错
- 训练输出路径被其他作业使用
- PyTorch1.0引擎提示“RuntimeError: std:exception”
- MindSpore日志提示“ retCode=0x91, [the model stream execute failed]”
- 使用moxing适配OBS路径,pandas读取文件报错
- 日志提示“Please upgrade numpy to >= xxx to use this pandas version”
- 重装的包与镜像装CUDA版本不匹配
- 创建训练作业提示错误码ModelArts.2763
- 训练作业日志中提示 “AttributeError: module '***' has no attribute '***'”
- 系统容器异常退出
- 硬盘限制故障
- 外网访问限制
- 权限问题
- GPU相关问题
-
业务代码问题
- 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields”
- 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0”
- 训练作业失败,返回错误码139
- 训练作业失败,如何使用开发环境调试训练代码?
- 日志提示“ '(slice(0, 13184, None), slice(None, None, None))' is an invalid key”
- 日志报错“DataFrame.dtypes for data must be int, float or bool”
- 日志提示“CUDNN_STATUS_NOT_SUPPORTED. ”
- 日志提示“Out of bounds nanosecond timestamp”
- 日志提示“Unexpected keyword argument passed to optimizer”
- 日志提示“no socket interface found”
- 日志提示“Runtimeerror: Dataloader worker (pid 46212 ) is killed by signal: Killed BP”
- 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”
- 日志提示“No module name 'unidecode'”
- 分布式Tensorflow无法使用“tf.variable”
- MXNet创建kvstore时程序被阻塞,无报错
- 日志出现ECC错误,导致训练作业失败
- 超过最大递归深度导致训练作业失败
- 使用预置算法训练时,训练失败,报“bndbox”错误
- 训练作业进程异常退出
- 训练作业进程被kill
- 预置算法运行故障
- 训练作业运行失败
- 专属资源池创建训练作业
- 训练作业性能问题
- Ascend相关问题
-
推理部署
-
模型管理
- 创建模型失败,如何定位和处理问题?
- 导入模型提示该账号受限或者没有操作权限
- 用户创建模型时构建镜像或导入文件失败
- 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的?
- 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志
- 通过OBS创建模型时,构建日志中提示pip下载包失败
- 通过自定义镜像创建模型失败
- 导入模型后部署服务,提示磁盘不足
- 创建模型成功后,部署服务报错,如何排查代码问题
- 自定义镜像导入配置运行时依赖无效
- 通过API接口查询模型详情,model_name返回值出现乱码
- 导入模型提示模型或镜像大小超过限制
- 导入模型提示单个模型文件超过5G限制
- 订阅的模型一直处于等待同步状态
- 创建模型失败,提示模型镜像构建任务超时,没有构建日志
-
服务部署
- 自定义镜像模型部署为在线服务时出现异常
- 部署的在线服务状态为告警
- 服务启动失败
- 服务部署、启动、升级和修改时,拉取镜像失败如何处理?
- 服务部署、启动、升级和修改时,镜像不断重启如何处理?
- 服务部署、启动、升级和修改时,容器健康检查失败如何处理?
- 服务部署、启动、升级和修改时,资源不足如何处理?
- 模型使用CV2包部署在线服务报错
- 服务状态一直处于“部署中”
- 服务启动后,状态断断续续处于“告警中”
- 服务部署失败,报错No Module named XXX
- IEF节点边缘服务部署失败
- 批量服务输入/输出obs目录不存在或者权限不足
- 部署在线服务出现报错No CUDA runtime is found
- 使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错
- 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments
- 内存不足如何处理?
- 服务预测
-
模型管理
- MoXing
- API/SDK
- 资源池
-
Lite Server
- GPU裸金属服务器使用EulerOS内核误升级如何解决
- GPU A系列裸金属服务器无法获取显卡如何解决
- GPU裸金属服务器无法Ping通如何解决
- GPU A系列裸金属服务器RoCE带宽不足如何解决?
- GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML
- 训练速度突然下降以及执行nvidia-smi卡顿如何解决?
- GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error
- 使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed
- 华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案
- GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败
- 裸金属服务器Euler OS升级NetworkManager-config-server导致SSH链接故障解决方案
- Lite Cluster
-
常见问题
- 权限相关
- 存储相关
- Standard自动学习
- Standard Workflow
-
Standard数据准备
- 在ModelArts数据集中添加图片对图片大小有限制吗?
- 如何将本地标注的数据导入ModelArts?
- 在ModelArts中数据标注完成后,标注结果存储在哪里?
- 在ModelArts中如何将标注结果下载至本地?
- 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
- ModelArts团队标注的数据分配机制是什么?
- 如何将两个ModelArts数据集合并?
- 在ModelArts中同一个账户,图片展示角度不同是为什么?
- 在ModelArts中智能标注完成后新加入数据需要重新训练吗?
- 在ModelArts中如何将图片划分到验证集或者训练集?
- 在ModelArts中物体检测标注时能否自定义标签?
- ModelArts数据集新建的版本找不到怎么办?
- 如何切分ModelArts数据集?
- 如何删除ModelArts数据集中的图片?
-
Standard Notebook
- ModelArts的Notebook是否支持Keras引擎?
- 如何在ModelArts的Notebook中上传下载OBS文件?
- ModelArts的Notebook实例upload后,数据会上传到哪里?
- 在ModelArts中如何将Notebook A的数据复制到Notebook B中?
- 在ModelArts的Notebook中如何对OBS的文件重命名?
- 在ModelArts的Notebook中如何使用pandas库处理OBS桶中的数据?
- 在ModelArts的Notebook中,如何访问其他账号的OBS桶?
- 在ModelArts的Notebook中JupyterLab默认工作路径是什么?
- 如何查看ModelArts的Notebook使用的cuda版本?
- 在ModelArts的Notebook中如何获取本机外网IP?
- ModelArts的Notebook有代理吗?如何关闭?
- 在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel?
- 在ModelArts的Notebook中如何将git clone的py文件变为ipynb文件?
- 在ModelArts的Notebook实例重启时,数据集会丢失吗?
- 在ModelArts的Notebook的Jupyterlab可以安装插件吗?
- 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练?
- 如何在ModelArts的Notebook的CodeLab上安装依赖?
- 在ModelArts的Notebook中安装远端插件时不稳定要怎么办?
- 在ModelArts的Notebook中实例重新启动后要怎么连接?
- 在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办?
- 在ModelArts的Notebook中使用VS Code如何查看远端日志?
- 在ModelArts的Notebook中如何打开VS Code的配置文件settings.json?
- 在ModelArts的Notebook中如何设置VS Code背景色为豆沙绿?
- 在ModelArts的Notebook中如何设置VS Code远端默认安装的插件?
- 在ModelArts的VS Code中如何把本地插件安装到远端或把远端插件安装到本地?
- 在ModelArts的Notebook中,如何使用昇腾多卡进行调试?
- 在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多?
- 在ModelArts的Notebook中使用MoXing时,如何进行增量训练?
- 在ModelArts的Notebook中如何查看GPU使用情况?
- 在ModelArts的Notebook中如何在代码中打印GPU使用信息?
- 在ModelArts的Notebook中JupyterLab的目录、Terminal的文件和OBS的文件之间的关系是什么?
- 如何在ModelArts的Notebook实例中使用ModelArts数据集?
- pip介绍及常用命令
- 在ModelArts的Notebook中不同规格资源/cache目录的大小是多少?
- 资源超分对在ModelArts的Notebook实例有什么影响?
- 如何在Notebook中安装外部库?
- 在ModelArts的Notebook中,访问外网速度不稳定怎么办?
-
Standard模型训练
- 在ModelArts训练得到的模型欠拟合怎么办?
- 在ModelArts中训练好后的模型如何获取?
- 在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练?
- 在ModelArts上训练模型如何配置输入输出数据?
- 在ModelArts上如何提升训练效率并减少与OBS的交互?
- 在ModelArts中使用Moxing复制数据时如何定义路径变量?
- 在ModelArts上如何创建引用第三方依赖包的训练作业?
- 在ModelArts训练时如何安装C++的依赖库?
- 在ModelArts训练作业中如何判断文件夹是否复制完毕?
- 如何在ModelArts训练作业中加载部分训练好的参数?
- ModelArts训练时使用os.system('cd xxx')无法进入文件夹怎么办?
- 在ModelArts训练代码中,如何获取依赖文件所在的路径?
- 自如何获取ModelArts训练容器中的文件实际路径?
- ModelArts训练中不同规格资源“/cache”目录的大小是多少?
- ModelArts训练作业为什么存在/work和/ma-user两种超参目录?
- 如何查看ModelArts训练作业资源占用情况?
- 如何将在ModelArts中训练好的模型下载或迁移到其他账号?
-
Standard推理部署
- 如何将Keras的.h5格式的模型导入到ModelArts中?
- ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数?
- 在ModelArts中使用自定义镜像创建在线服务,如何修改端口?
- ModelArts平台是否支持多模型导入?
- 在ModelArts中导入模型对于镜像大小有什么限制?
- ModelArts在线服务和批量服务有什么区别?
- ModelArts在线服务和边缘服务有什么区别?
- 在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源?
- ModelArts线上训练得到的模型是否支持离线部署在本地?
- ModelArts在线服务预测请求体大小限制是多少?
- ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突?
- ModelArts在线服务预测时,如何提高预测速度?
- 在ModelArts中调整模型后,部署新版本模型能否保持原API接口不变?
- ModelArts在线服务的API接口组成规则是什么?
- ModelArts在线服务处于运行中时,如何填写request header和request body?
-
Standard镜像相关
- 不在同一个主账号下,如何使用他人的自定义镜像创建Notebook?
- 如何登录并上传镜像到SWR?
- 在Dockerfile中如何给镜像设置环境变量?
- 如何通过docker镜像启动容器?
- 如何在ModelArts的Notebook中配置Conda源?
- ModelArts的自定义镜像软件版本匹配有哪些注意事项?
- 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么?
- 如何保证自定义镜像能不因为超过35G而保存失败?
- 如何减小本地或ECS构建镜像的目的镜像的大小?
- 镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗?
- 在ModelArts镜像管理注册镜像报错ModelArts.6787怎么处理?
- 用户如何设置默认的kernel?
- Standard专属资源池
- Studio
- Edge
- API/SDK
- Lite Server
- Lite Cluster
- 历史文档待下线
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
查看诊断报告
Advisor分析profiling会输出html和xlsx两份文件。请优先查看html报告进行训练作业性能调优。xlsx中记录了html中全量数据,如集群计算、通信和下发的耗时,可以基于xlsx对计算耗时、下发耗时和带宽等列进行排序,从而快速过滤出计算慢卡、下发慢卡、带宽最小卡。
html总览
html中包括总体性能分析(overall)、快慢卡算子性能比对(comparison)和性能问题分析(performance problem analysis)三大模块。overall模块包含对单卡或者集群的性能统计数据,comparison模块包含目标集群profiling与标杆集群profiling或目标集群内部快慢卡的算子比对数据,performance problem analysis模块包含计算(computation)、下发(schedule)、通信(communication)、内存(memory)和数据加载(dataloader)五个维度的具体分析。用户首先需要查看overall模块初步明确是否存在计算维度的慢卡和下发维度慢卡,然后再重点关注performance problem analysis中对应维度的各项分析及其优先级。
红色为高优先级,黄色为中等优先级,绿色为低优先级。参考html进行分析调优时,请按照优先级从高到低依次进行并测试调优后性能,快速解决重点问题。

当前advisor的performance problem analysis中包含如下分析项。
分析维度 |
分析项 |
释义 |
---|---|---|
overall |
overall summary |
对于单卡profiling进行性能拆解,获取单步计算、下发和通信耗时。 |
slow rank |
对于集群profiling进行性能统计,获取每张卡不同step的计算、下发和通信耗时。 |
|
slow link |
对于集群profiling进行性能统计,获取每张卡不同step的带宽信息。 |
|
environment variable |
识别错误配置且会影响性能的环境变量,如PLOG日志级别,HCCL相关环境变量,依赖24年930版本的pta。 |
|
comparison |
kernel compare |
两张卡NPU侧计算算子对比。 |
api compare |
两张卡CPU侧torch aten算子下发对比。 |
|
performance problem analysis |
computation - AI CORE frequency |
计算维度,识别降频的节点,节点降频会导致flash attention和matmul类算子计算性能变差。 |
computation - AICPU |
计算维度,识别AICPU算子,部分AICPU算子计算性能较差。 |
|
computation - operator dynamic shape |
计算维度,检测动态shape,动态shape会触发频繁的算子编译。 |
|
computation - operator bound |
计算维度,算子计算性能分析,例如算子是否充分使用AICORE核数。 |
|
schedule - synchronize stream |
下发维度,异常同步流分析,过多同步流会打断CPU侧任务异步下发。 |
|
schedule - garbage collection(GC) |
下发维度,识别异常耗时的垃圾回收,垃圾回收会造成大段空闲。 |
|
schedule - operator dispatch |
下发维度,算子下发时编译分析,大量算子编译会导致整体训练性能变差。 |
|
schedule - syncBatchNorm |
下发维度,NPU上分布式训练使用syncBN性能较差。 |
|
schedule - affinity api |
下发维度,自动识别可替换的亲和API(融合算子API如rms_norm,亲和优化器如NpuFusedAdamw)。 |
|
communication - small packet |
通信维度,识别因batch过小或者梯度累积较少导致的未充分利用机内通信带宽。 |
|
communication - bandwidth contention |
通信维度,识别计算和通信相互掩盖,可能会抢占通信带宽。 |
|
communication - retransmission |
通信维度,识别通信重传问题,单次重传耗时4秒以上。 |
|
memory |
内存维度,识别异常内存算子。 |
|
dataloader |
数据加载维度,异常耗时的数据读取将会导致明显的训练性能劣化。 |
overall模块介绍
- 单卡overall summary
下图展示了单卡上一个step的端到端耗时为1353ms,其中计算耗时(昇腾硬件上算子执行耗时)是57ms,未掩盖通信耗时为0ms,空闲耗时(硬件上没有进行计算和通信的其他时间)为1295ms。基于这三项数据可以初步判断当前训练任务的主要耗时瓶颈为空闲耗时。空闲耗时通常是任务下发(schedule)、数据加载(dataloader)和内存(memory)三个维度问题导致的,因此可以重点关注performance problem analysis中对应三个维度的分析。同理如果计算耗时占比较大,则应该重点关注计算维度的分析。
图2 单卡性能拆解总体描述图3 单卡性能拆解详情 - 多卡slow rank & slow link
下图展示了多卡profiling分析的overall模块,包含集群快慢卡统计数值(slow rank,用于分析计算和任务下发的快慢卡)和集群带宽统计数值(slow link,用于分析集群中的网络通信慢链路)。点开slow rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时。基于该表格,通常关注计算耗时(compute)和空闲耗时(free)这两列,可以初步分析当前瓶颈点是计算还是任务下发,以及是否存在计算快慢卡和下发快慢卡。如下图所示,可以看到8号卡的计算耗时明显大于其他卡,因此8号卡的“短板效应”将会拖慢集群的整体训练速度,后续性能分析需要重点关注8号卡的计算维度。
图4 多卡不同step计算、下发和通信耗时统计值图5 多卡不同step通信带宽统计值 - 环境变量Environment Variable Issues
识别模型训练环境中设置的昇腾相关环境变量并给出建议。
图6 环境变量分析表2 当前支持的环境变量 环境变量名称
释义
ASCEND_GLOBAL_LOG_LEVEL
plog日志级别,推荐设置为2(warning级别),低级别日志等级会导致cpu侧性能问题。
HCCL_RDMA_TC
HCCL通信相关环境变量,通常无需设置该环境变量,建议unset该环境变量。具体参考拥塞控制与纠错配置策略
HCCL_RDMA_SL
HCCL通信相关环境变量,通常无需设置该环境变量,建议unset该环境变量。具体参考拥塞控制与纠错配置策略
ACLNN_CACHE_LIMIT
用于缓存cann侧的aclnn算子,当空闲时间(free)较大时,可以尝试设置一个较大的数值,如export ACLNN_CACHE_LIMIT=100000
HOST_CACHE_CAPACITY
用于动态shape缓存,当存在动态shape时,设置一个非零正整数,如export HOST_CACHE_CAPACITY=20
ASCEND_ENHANCE_ENABLE
使能HCCL的FFTS+模式,export ASCEND_ENHANCE_ENABLE=1
PYTORCH_NPU_ALLOC_CONF
控制缓存分配,当存在内存碎片时,执行export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
ASCEND_LAUNCH_BLOCKING
是否启动同步下发,同步下发会导致严重的性能劣化,建议执行unset ASCEND_LAUNCH_BLOCKING
comparison模块介绍
当同时指定目标集群profiling和标杆集群profiling或者目标集群内部存在快慢卡时,advisor会针对计算和下发性能存在差异的卡(快慢卡)进行算子级的对比。
如下图所示,当分析时显式指定了标杆集群profiling数据,advisor识别到两次训练任务中0号卡的step12存在计算性能差异,则会对目标集群的0号卡step12与标杆集群的0号卡step12进行kernel(npu侧计算的算子)性能对比。基于该对比数据,可以判断两张卡上的npu算子是否存在计算性能差异。

如下图所示,当分析时显式指定了标杆集群profiling数据,advisor识别到两次训练任务中6号卡的step16存在api下发性能差异,对目标集群的6号卡step16与标杆集群的6号卡step16进行了api(cpu侧的torch aten算子任务下发)的性能对比。基于该对比数据,可以判断两张卡上的aten算子是否存在下发性能差异。

如下图所示,分析时并没有指定标杆集群profiling数据,但advisor识别到目标集群存在任务下发快慢卡(16和19号卡)现象,因此对比了16号卡step175和19号卡step172的api下发性能。

performance problem analysis模块介绍
perfomance problem analysis中会细分为计算(computation),下发(schedule),通信(communication)、内存(memory)和数据加载(dataloader)五个维度,根据训练作业卡数、训练实际性能问题有不同的呈现,并非所有训练任务都有上述五个维度的分析。

- computation
计算维度通常包含如下几类问题:
- 降频:对应html中的'AI CORE Frequency Issues'。NPU AICORE主频降低,导致flash attention和matmul类算子计算性能严重劣化。
- AICPU算子:对应html中的'AICPU Issues'。部分算子因NPU支持度或者输入数据shape/dtype等原因,无法在AICORE上运行,因此会放在AICPU上进行计算,部分AICPU算子会存在明显的性能劣化。
- 动态shape:对应html中的'Operator Dynamic Shape Issues'。动态shape场景,部分昇腾算子会重复编译,导致计算延后,影响性能。
- operator bound等问题:算子未打满AICORE的核数,导致计算利用率较低。
具体介绍如下:
- AI CORE Frequency Issues
下图展示了高优先级的降频问题,从表格中可以看到flash attention算子耗时最长且降频比率最高,因此降频严重影响了整体的训练性能。对于降频问题,用户通常无法自行解决,需要联系服务方如华为云技术支持排查机器的温度和功耗。
图11 降频分析 - AICPU Issues
下图展示了高优先级的AICPU问题,AICPU算子单步计算耗时313秒,GridSample2D算子单步计算耗时208秒,因此需要重点关注该算子。可以通过html中提供的堆栈信息查看源码中对该算子的调用是否可以替换成其他torch api,如果分析后无法替换可以求助昇腾算子侧的算子开发人员进行算子优化分析。
图12 AICPU算子分析 - Operator Dynamic Shape Issues
下图展示了低优先级的动态shape问题,在NPU上动态shape可能导致频繁的算子编译从而影响训练性能,可以按照html中的提示在训练脚本开头加上如下红框中的两行代码(分布式训练请确保分布式训练的每个进程都可以使能这两行代码)。
图13 动态shape分析
- schedule
下发维度通常包含如下几类问题
- 同步流:对应html中的'Synchronize Stream Issues'。用户设置了ASCEND_LAUNCH_BLOCKING环境变量,打断了CPU侧算子的异步下发,严重影响训练性能。
- GC:对应html中的'GC Analysis'。python garbage collection机制,大规模集群训练时GC任务会导致部分step训练耗时异常增大。
- 算子下发:对应html中的'Operator Dispatch Issues'。训练时如果频繁进行算子编译会严重影响训练性能,可以增加两行python代码关闭算子编译。
- 亲和API:对应html中的'Affinity API Issues'。通过使能亲和API(NPU融合算子API如rms_norm,NPU亲和优化器如NPUFusedAdamw)可以减少算子下发数量,从而提升训练性能。
- syncBatchNorm:对应html中的'SyncBatchNorm Issues'。多卡DDP训练时如果使用syncBatchNorm,会存在明显的算子下发和通信瓶颈。
具体介绍如下:
- Synchronize Stream Issues
下图展示了高优先级的同步流问题,html中提示发现大量同步算子,可以尝试`unset ASCEND_LAUNCH_BLOCKING` 环境变量后再进行训练。
图14 异常同步流分析 - GC Analysis
下图展示了中优先级的GC问题,html中提示发现单步训练中存在200ms左右的空闲时间且在该时间窗内cpu侧没有进行训练算子下发,怀疑是GC导致,可以尝试加上`gc.disable()`关闭GC。
图15 python垃圾回收(GC)分析 - Operator Dispatch Issues
下图展示了中优先级的算子下发问题,html中提示识别到单步训练中存在6678个算子进行了算子编译,编译耗时149ms,可以在训练脚本最开头加上suggestion中的两行代码关闭算子编译(分布式训练请确保每个进程都可以使能这两行代码)。
图16 算子编译分析 - Affinity API Issues
下图展示了低优先的亲和API替换,通常仅在首次将训练任务从GPU迁移至NPU时需要关注这部分内容。已经在NPU上进行长训的任务出现性能问题,可以忽略该部分。html中提示存在torch_npu.confusion_transpose, 梯度裁剪和亲和优化器等多个可替换的API,用户可根据代码堆栈找到需要替换的具体源码,然后根据API instruction跳转后的参考文档修改源代码,从而使能亲和API提升训练性能。注意这里提示的亲和API并非都能提升训练性能,需要用户替换后实测,由于有一定代码修改和测试成本,因此优先级可以视作最低。
图17 亲和API分析 - SyncBatchNorm Issues
下图展示了高优先级的syncBatchNorm问题,html中提示可以通过去除convert_sync_batchnorm代码使能普通的batchNorm,如果模型开发者评估认为对训练精度存在影响,可以使用html中给出的代码段替换torch_npu中syncbatchnorm.py文件的forward方法(可以在训练环境中执行`pip show torch_npu`查看torch_npu的安装路径)。这类优化通常可以较显著地提升训练速度。
图18 SyncBatchNorm分析
- memory
内存维度当前识别的问题较为简单,通常是NPU HBM占用过大或者存在内存碎片导致自动触发昇腾内存释放/重整算子(Memory Operator Issues),进而影响了训练性能。
下图展示了高优先级的内存算子问题,html中提示对于1号卡存在大量aclrtFree和aclMalloc算子,导致存在较大的空闲时间。按照建议,对于aclrtFree算子类问题,首先观察NPU HBM是否已经打满,如果打满则尝试减小micro batch size或者调整训练策略,例如训练LLM模型时使用ZeRO 3优化内存。其次采集profiling时设置“with_stack=True参数”,然后基于MindInsight Studio可视化profiling数据查看代码中是否存在empty_cache操作,如果存在则注释对应代码。对于aclMalloc算子类问题,按照建议设置环境变量即可减少内存碎片。
图19 内存算子分析 - dataloader
数据加载维度(Slow Dataloader Issues)通常包含如下几类问题:
- communication
通信维度当前支持检测如下几类问题。
- 通信计算并行时抢占通信带宽:对应html中的'BandWidth Contention Analysis'。在LLM类模型训练过程中,对于megatron类框架可以配置overlap相关参数使能计算和通信互相掩盖,进而提升训练性能。但部分场景中计算抢占通信带宽反而会导致性能劣化。
- 小包分析:对应html中的'Packet Analysis'。当BatchSize较小或其他场景,并没有打慢NPU HBM,卡间通信数据包较小,没有充分利用通信带宽。
- RDMA重传(跨节点通信):对应html中的“Communication Retransmission Analysis”。当网络通信配置出现冲突情况下,RDMA通信传输可能出现重传,导致通信耗时异常大幅增加。
具体介绍如下:
- BandWidth Contention Analysis
下图展示了低优先级的通信带宽抢占问题,大部分场景中通信计算互相掩盖是有较大训练性能收益的,可以通过修改overlap或其他相关参数来测试是否存在性能提升。
图21 通信带宽抢占分析 - Packet Analysis
下图展示了低优先级的通信小包问题,html中提示SDMA(机内通信)带宽相对较小,可以尝试增大batchSize或者梯度累积参数,如果配置了ZeRO3则推荐使用ZeRO1或者ZeRO2(如果内存够)。
图22 通信小包分析 - Communication Retransmission Analysis
单次通信重传将会耗时4秒以上,会导致较严重的通信性能劣化,这类问题通常是由于节点网络配置错误导致,可以联系服务方如华为云技术支持排查网络配置。
图23 通信重传分析