推理精度测试
本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。
Step1 执行精度测试
精度测试需要数据集进行测试。推荐公共数据集mmlu和ceval。AscendCloud-3rdLLM-6.3.905-xxx.zip代码包已包含数据集。
精度测试使用的是openai接口,部署服务的时候请使用openai-api启动,暂不支持vllm-api接口。
- 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM的/llm_evaluation目录中,代码目录结构如下:
benchmark_eval ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息 │ ├── ceval_subject_mapping.json # ceval数据集学科信息 ├── evaluators │ ├── evaluator.py # 数据集数据预处理方法集 │ ├── chatglm.py # 处理请求相应模块, 一般和chatglm的官方评测数据集ceval搭配 │ ├── llama.py # 处理请求相应模块, 一般和llama的评测数据集mmlu搭配 ├── mmlu-exam, mmlu数据集 ├── ceval-exam, ceval数据集 ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求的服务
- 执行精度测试启动脚本eval_test.py,具体操作命令如下,可以根据参数说明修改参数。
python eval_test.py \ --max_workers=1 \ --service_name=qwen-14b-test \ --eval_dataset=ceval \ --service_url=${API接口公网地址}/v1/completions \ --few_shot=3 \ --is_devserver=False \ --vllm_model=${model_path} \ --deploy_method=vllm
参数说明:
- max_workers:请求的最大线程数,默认为1。
- service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。
- eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。
- service_url:服务接口地址,若服务部署在notebook中,该地址为"http://127.0.0.1:${port}/v1/completions";若服务部署在生产环境中,该地址由API接口公网地址与"/v1/completions"拼接而成,部署成功后的在线服务详情页中可查看API接口公网地址。
图1 API接口公网地址
- few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。
- is_devserver: 是否DevServer部署方式,True表示DevServer模式。False表示ModelArts Standard模式。
- vllm_model:对应Step4 部署并启动推理服务中的模型地址参数model,模型格式是Huggingface的目录格式。
- deploy_method:部署方法,不同的部署方式api参数输入、输出解析方式不同,目前支持tgi、vllm等方式,本案例使用vllm部署方式。
若要在生产环境中进行精度测试,还需修改benchmark_eval/config/config.json中app_code,app_code获取方式见访问在线服务(APP认证)。
Step2 查看精度测试结果
默认情况下,评测结果会按照result/{service_name}/{eval_dataset}-{timestamp} 的目录结果保存到对应的测试工程。执行多少次,则会在{service_name}下生成多少次结果。
单独的评测结果如下:
{eval_dataset}-{timestamp} # 例如: mmlu-20240205093257 ├── accuracy │ ├── evaluation_accuracy.xlsx # 测试的评分结果,包含各个学科数据集的评分和总和评分。 ├── infer_info │ ├── xxx1.csv # 单个数据集的评测结果 │ ├── ...... │ ├── xxxn.csv # 单个数据集的评测结果 ├── summary_result │ ├── answer_correct.xlsx # 回答正确的结果 │ ├── answer_error.xlsx # 保存回答了问题的选项,但是回答结果错误 │ ├── answer_result_unknow.xlsx # 保存未推理出结果的问题,例如超时、系统错误 │ ├── system_error.xlsx # 保存推理结果,但是可能答非所问,无法判断是否正确,需要人工判断进行纠偏。