Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Creating a Labeling Job

Updated on 2025-01-06 GMT+08:00

Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a group of persons (team labeling), or enable auto labeling to quickly label images. You can also modify existing labels, or delete them and re-label.

Labeling Job Types

Create a labeling job based on the dataset type. ModelArts supports the following types of labeling jobs:

  • Images
    • Image classification: identifies a class of objects in images.
    • Object detection: identifies the position and class of each object in an image.
    • Image segmentation: segments an image into different areas based on objects in the image.
  • Audio
    • Sound classification: classifies and identifies different sounds.
    • Speech labeling: labels speech content.
    • Speech paragraph labeling: segments and labels speech content.
  • Text
    • Text classification: assigns labels to text according to its content.
    • Named entity recognition: assigns labels to named entities in text, such as time and locations.
    • Text triplet: assigns labels to entity segments and entity relationships in the text.
  • Videos

    Video labeling: identifies the position and class of each object in a video. Only the MP4 format is supported.

Prerequisites

Before labeling data, create a dataset.

Procedure

  1. Log in to the ModelArts management console. In the navigation pane on the left, chooseData Preparation > Label Data.
    NOTE:

    Data labeling is supported only in the following regions: CN North-Beijing4, CN North-Beijing1, CN East-Shanghai1, CN South-Guangzhou, CN Southwest-Guiyang1, CN-Hong Kong, AP-Singapore, AP-Bangkok, AP-Jakarta, LA-Santiago, LA-Sao Paulo1, and LA-Mexico City2.

  2. On the Data Labeling page, click Create Labeling Job in the upper right corner. On the page that is displayed, create a labeling job.
    1. Enter basic information about the labeling job, including Name and Description.
      Figure 1 Basic information about a labeling job
    2. Select a labeling scene and type as required.
      Figure 2 Selecting a labeling scene and type
    3. Set the parameters based on the labeling job type. For details, see the parameters of the following labeling job types:
    4. Click Create in the lower right corner of the page.

      After the labeling job is created, the data labeling management page is displayed. You can perform the following operations on the labeling job: start auto labeling, publish new versions, modify the labeling job, and delete the labeling job.

Images (Image Classification, Image Segmentation, and Object Detection)

Figure 3 Parameters of labeling jobs for image classification and object detection
Table 1 Parameters of an image labeling job

Parameter

Description

Dataset Name

Select a dataset that supports the labeling type.

Label Set

  • Label name: Enter a label name with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Set label colors for object detection and image segmentation labeling jobs. Select a color from the color palette on the right of a label, or enter the hexadecimal color code to set the color.
  • Add Label Attribute: For an object detection labeling job, you can click the plus sign (+) on the right to add label attributes after setting a label color. Label attributes are used to distinguish different attributes of the objects with the same label. For example, yellow kittens and black kittens have the same label cat and their label attribute is color.

Team Labeling

Enable or disable team labeling. Image segmentation does not support team labeling. Therefore, this parameter is unavailable when you use image segmentation.

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameter settings, see Creating a Team Labeling Job.

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

Audio (Sound Classification, Speech Labeling, and Speech Paragraph Labeling)

Figure 4 Parameters of labeling jobs for sound classification, speech labeling, and speech paragraph labeling
Table 2 Parameters of an audio labeling job

Parameter

Description

Dataset Name

Select a dataset that supports the labeling type.

Label Set (for sound classification)

You can add a label set for labeling jobs of sound classification.

  • Label name: Enter 1 to 1024 characters in the Label Set text box.
  • Add Label: Click Add Label to add one or more labels.

Label Management (for speech paragraph labeling)

Label management is available for speech paragraph labeling.

  • Single Label
    A single label is used to label a piece of audio that has only one class.
    • Label: Enter a label name, with 1 to 1024 characters.
    • Label Color: Set the label color in the Label Color column. You can select a color from the color palette or enter a hexadecimal color code to set the color.
  • Multiple Labels
    Multiple labels are suitable for multi-dimensional labeling. For example, you can label a piece of audio as both noise and speech. For speech, you can label the audio with different speakers. You can click Add Label Class to add multiple label classes. A label class can contain multiple labels. The label class or name contains 1 to 256 characters. Only letters, digits, periods (.), underscores (_), and hyphens (-) are allowed.
    • Add Label Class: Enter a label class.
    • Label: Enter a label name.
    • Add Label: Click Add Label to add one or more labels.

Speech Labeling (for speech paragraph labeling)

Only datasets for speech paragraph labeling support speech labeling. By default, speech labeling is disabled. If this function is enabled, you can label speech content.

Team Labeling (for speech paragraph labeling)

Only datasets of speech paragraph labeling support team labeling.

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameter settings, see Creating a Team Labeling Job.

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

Text (Text Classification, Named Entity Recognition, and Text Triplet)

Figure 5 Parameters of labeling jobs for text classification, named entity recognition, and text triplet
Table 3 Parameters of a text labeling job

Parameter

Description

Dataset Name

Select a dataset that supports the labeling type.

Label Set (for text classification and named entity recognition)

  • Label name: Enter a label name, with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Select a color from the color palette or enter the hexadecimal color code to set the color.
    Figure 6 Setting the label color

Label Set (for text triplet)

For datasets of the text triplet type, set entity labels and relationship labels.

  • Entity Label: Set the label name and label color. You can click the plus sign (+) on the right of the color area to add multiple labels.
  • Relationship Label: a relationship between two entities. Set the source entity and target entity. Therefore, add at least two entity labels before adding a relationship label.
Figure 7 Adding a label

Team Labeling

Enable or disable team labeling.

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameter settings, see Creating a Team Labeling Job.

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

Videos

Figure 8 Parameters of a video labeling job
Table 4 Parameters of a video labeling job

Parameter

Description

Dataset Name

Select a dataset that supports the labeling type.

Label Set

  • Label name: Enter a label name, with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Select a color from the color palette or enter the hexadecimal color code to set the color.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback