Help Center/
ModelArts/
Image Management/
Using a Preset Image/
Training Base Image/
Training Base Image (MPI)
Updated on 2023-06-19 GMT+08:00
Training Base Image (MPI)
This section describes preset mindspore_1.3.0 images.
Engine Version: mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64
- Image address: swr.{region}.myhuaweicloud.com/aip/mindspore_1_3_0:train-mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-roma-20211104202338-f258e59
- Image creation time: 20211104202338(yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 10.1.243
- cudnn: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/MindSpore-1.3.0-gpu/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/MindSpore-1.3.0-gpu/lib/python3.7/site-packages
- The versions of some third-party packages:
requests 2.26.0 dask 2021.9.0 easydict 1.9 enum34 1.1.10 mindspore-gpu 1.3.0 Flask 1.1.1 grpcio 1.41.1 gunicorn 20.1.0 idna 3.3 PyYAML 5.1 imageio 2.10.1 imgaug 0.4.0 lxml 4.6.4 matplotlib 3.4.2 psutil 5.8.0 scikit-image 0.18.3 numba 0.47.0 numpy 1.17.0 opencv-python 4.5.2.54 tifffile 2021.11.2 pandas 1.1.5 Pillow 8.4.0 pip 21.0.1 protobuf 3.17.3 scikit-learn 0.22.1 ...
- Earlier versions: none
Parent topic: Training Base Image
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
The system is busy. Please try again later.
For any further questions, feel free to contact us through the chatbot.
Chatbot