Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

TensorFlow

Updated on 2025-01-06 GMT+08:00

There are two types of TensorFlow APIs, Keras and tf. They use different code for training and saving models, but the same code for inference.

Training a Model (Keras API)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

# Import a training dataset.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

from keras.layers import Dense
from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

# Define a model network.
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(units=10, activation='softmax'))

# Define an optimizer and loss functions.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.summary()
# Train the model.
model.fit(x_train, y_train, epochs=2)
# Evaluate the model.
model.evaluate(x_test, y_test)

Saving a Model (Keras API)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from keras import backend as K  

# K.get_session().run(tf.global_variables_initializer())

# Define the inputs and outputs of the prediction API.
# The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
    inputs={"images" : model.input},
    outputs={"scores" : model.output}
)

# Define a save path.
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

    sess = K.get_session(),
    # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment.
    tags=[tf.saved_model.tag_constants.SERVING],
    """
    signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows:
    tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
    """
    signature_def_map={
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            predict_signature
    }

)
builder.save()

Training a Model (tf API)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import print_function

import gzip
import os
import urllib

import numpy
import tensorflow as tf
from six.moves import urllib

# Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/.
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000


def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
        os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
    return filepath


def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting %s' % filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data


def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot


def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting %s' % filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                'Invalid magic number %d in MNIST label file: %s' %
                (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_to_one_hot(labels)
        return labels


class DataSet(object):
    """Class encompassing test, validation and training MNIST data set."""

    def __init__(self, images, labels, fake_data=False, one_hot=False):
        """Construct a DataSet. one_hot arg is used only if fake_data is true."""

        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                    'images.shape: %s labels.shape: %s' % (images.shape,
                                                           labels.shape))
            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(numpy.float32)
            images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0

    @property
    def images(self):
        return self._images

    @property
    def labels(self):
        return self._labels

    @property
    def num_examples(self):
        return self._num_examples

    @property
    def epochs_completed(self):
        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):
        """Return the next `batch_size` examples from this data set."""
        if fake_data:
            fake_image = [1] * 784
            if self.one_hot:
                fake_label = [1] + [0] * 9
            else:
                fake_label = 0
            return [fake_image for _ in range(batch_size)], [
                fake_label for _ in range(batch_size)
            ]
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
            # Finished epoch
            self._epochs_completed += 1
            # Shuffle the data
            perm = numpy.arange(self._num_examples)
            numpy.random.shuffle(perm)
            self._images = self._images[perm]
            self._labels = self._labels[perm]
            # Start next epoch
            start = 0
            self._index_in_epoch = batch_size
            assert batch_size <= self._num_examples
        end = self._index_in_epoch
        return self._images[start:end], self._labels[start:end]


def read_data_sets(train_dir, fake_data=False, one_hot=False):
    """Return training, validation and testing data sets."""

    class DataSets(object):
        pass

    data_sets = DataSets()

    if fake_data:
        data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
        data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
        data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
        return data_sets

    local_file = maybe_download(TRAIN_IMAGES, train_dir)
    train_images = extract_images(local_file)

    local_file = maybe_download(TRAIN_LABELS, train_dir)
    train_labels = extract_labels(local_file, one_hot=one_hot)

    local_file = maybe_download(TEST_IMAGES, train_dir)
    test_images = extract_images(local_file)

    local_file = maybe_download(TEST_LABELS, train_dir)
    test_labels = extract_labels(local_file, one_hot=one_hot)

    validation_images = train_images[:VALIDATION_SIZE]
    validation_labels = train_labels[:VALIDATION_SIZE]
    train_images = train_images[VALIDATION_SIZE:]
    train_labels = train_labels[VALIDATION_SIZE:]

    data_sets.train = DataSet(train_images, train_labels)
    data_sets.validation = DataSet(validation_images, validation_labels)
    data_sets.test = DataSet(test_images, test_labels)
    return data_sets

training_iteration = 1000

modelarts_example_path =  './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x')  # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
    tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))
for _ in range(training_iteration):
    batch = mnist.train.next_batch(50)
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
    accuracy, feed_dict={
        x: mnist.test.images,
        y_: mnist.test.labels
    }))
print('Done training!')

Saving a Model (tf API)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Export the model.
# The model needs to be saved using the saved_model API.
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

# Define the inputs and outputs of the prediction API.
# The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
prediction_signature = (
    tf.saved_model.signature_def_utils.build_signature_def(
        inputs={'images': tensor_info_x},
        outputs={'scores': tensor_info_y},
        method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
    # Set tag to serve/tf.saved_model.tag_constants.SERVING.
    sess, [tf.saved_model.tag_constants.SERVING],
    signature_def_map={
        'predict_images':
            prediction_signature,
    },
    legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

Inference Code (Keras and tf APIs)

In the model inference code file customize_service.py, add a child model class which inherits properties from its parent model class. For details about the import statements of different types of parent model classes, see Table 1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService


class MnistService(TfServingBaseService):

    # Match the model input with the user's HTTPS API input during preprocessing.
    # The model input corresponding to the preceding training part is {"images":<array>}.
    def _preprocess(self, data):

        preprocessed_data = {}
        images = []
        # Iterate the input data.
        for k, v in data.items():
            for file_name, file_content in v.items():
                image1 = Image.open(file_content)
                image1 = np.array(image1, dtype=np.float32)
                image1.resize((1,784))
                images.append(image1)
        # Return the numpy array.
        images = np.array(images,dtype=np.float32)
        # Perform batch processing on multiple input samples and ensure that the shape is the same as that inputted during training.
        images.resize((len(data), 784))
        preprocessed_data['images'] = images
        return preprocessed_data

    # Processing logic of the inference for invoking the parent class.

    # The output corresponding to model saving in the preceding training part is {"scores":<array>}.
    # Postprocess the HTTPS output.
    def _postprocess(self, data):
        infer_output = {"mnist_result": []}
        # Iterate the model output.
        for output_name, results in data.items():
            for result in results:
                infer_output["mnist_result"].append(result.index(max(result)))
        return infer_output

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback