
ModelArts

Inference Deployment

Issue 01

Date 2025-01-06

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Introduction to Inference...1

2 Managing AI Applications... 3
2.1 Introduction to AI Application Management...3
2.2 Creating an AI Application... 6
2.2.1 Importing a Meta Model from a Training Job... 6
2.2.2 Importing a Meta Model from a Template...9
2.2.3 Importing a Meta Model from OBS.. 11
2.2.4 Importing a Meta Model from a Container Image... 15
2.3 Viewing the AI Application List.. 19
2.4 Viewing Details About an AI Application... 21
2.5 Managing AI Application Versions.. 23
2.6 Viewing Events of an AI Application.. 24

3 Deploying an AI Application as a Service..29
3.1 Deploying AI Applications as Real-Time Services.. 29
3.1.1 Deploying as a Real-Time Service... 29
3.1.2 Viewing Service Details... 35
3.1.3 Testing the Deployed Service.. 42
3.1.4 Accessing Real-Time Services.. 44
3.1.4.1 Accessing a Real-Time Service...44
3.1.4.2 Authentication Mode.. 45
3.1.4.2.1 Access Authenticated Using a Token... 45
3.1.4.2.2 Access Authenticated Using an AK/SK.. 53
3.1.4.2.3 Access Authenticated Using an Application.. 59
3.1.4.3 Access Mode.. 69
3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)...69
3.1.4.3.2 Accessing a Real-Time Service (VPC High-Speed Channel).. 70
3.1.4.4 Accessing a Real-Time Service Through WebSocket... 74
3.1.4.5 Server-Sent Events... 77
3.1.5 Integrating a Real-Time Service... 78
3.1.6 Cloud Shell... 79
3.2 Deploying AI Applications as Batch Services...80
3.2.1 Deploying as a Batch Service.. 80

ModelArts
Inference Deployment Contents

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.2.2 Viewing Details About a Batch Service ...86
3.2.3 Viewing the Batch Service Prediction Result..88
3.3 Upgrading a Service... 89
3.4 Starting, Stopping, Deleting, or Restarting a Service... 91
3.5 Viewing Service Events..92

4 Inference Specifications... 96
4.1 Model Package Specifications.. 96
4.1.1 Introduction to Model Package Specifications.. 96
4.1.2 Specifications for Editing a Model Configuration File ... 97
4.1.3 Specifications for Writing Model Inference Code ... 113
4.2 Model Templates.. 119
4.2.1 Introduction to Model Templates.. 119
4.2.2 Templates...120
4.2.2.1 TensorFlow-based Image Classification Template... 120
4.2.2.2 TensorFlow-py27 General Template..121
4.2.2.3 TensorFlow-py36 General Template..122
4.2.2.4 MXNet-py27 General Template.. 123
4.2.2.5 MXNet-py36 General Template.. 124
4.2.2.6 PyTorch-py27 General Template.. 125
4.2.2.7 PyTorch-py36 General Template.. 126
4.2.2.8 Caffe-CPU-py27 General Template... 127
4.2.2.9 Caffe-GPU-py27 General Template... 128
4.2.2.10 Caffe-CPU-py36 General Template... 129
4.2.2.11 Caffe-GPU-py36 General Template...130
4.2.2.12 Arm-Ascend Template... 131
4.2.3 Input and Output Modes..132
4.2.3.1 Built-in Object Detection Mode..132
4.2.3.2 Built-in Image Processing Mode...134
4.2.3.3 Built-in Predictive Analytics Mode... 135
4.2.3.4 Undefined Mode.. 137
4.3 Examples of Custom Scripts... 137
4.3.1 TensorFlow.. 137
4.3.2 TensorFlow 2.1... 143
4.3.3 PyTorch... 145
4.3.4 Caffe.. 148
4.3.5 XGBoost.. 153
4.3.6 PySpark... 155
4.3.7 Scikit-learn...156

5 ModelArts Monitoring on Cloud Eye.. 158
5.1 ModelArts Metrics.. 158
5.2 Setting Alarm Rules... 161

ModelArts
Inference Deployment Contents

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

5.3 Viewing Monitoring Metrics... 162

ModelArts
Inference Deployment Contents

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 Introduction to Inference

After an AI model is developed, you can use it to create an AI application and
quickly deploy the application as an inference service. The AI inference capabilities
can be integrated into your IT platform by calling APIs.

Figure 1-1 Inference

● Develop a model: Models can be developed in ModelArts or your local
development environment. A locally developed model must be uploaded to
Huawei Cloud OBS.

● Create an AI application: Import the model file and inference file to the
ModelArts model repository and manage them by version. Use these files to
build an executable AI application.

● Deploy as a service: Deploy the AI application as a container instance in the
resource pool and register inference APIs that can be accessed externally.

● Perform inference: Add the function of calling the inference APIs to your
application to integrate AI inference into the service process.

Deploying an AI Application as a Service
After an AI application is created, you can deploy it as a service on the Deploy
page. ModelArts supports the following deployment types:
● Real-time service

Deploy an AI application as a web service with real-time test UI and
monitoring supported.

ModelArts
Inference Deployment 1 Introduction to Inference

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

● Batch service
Deploy an AI application as a batch service that performs inference on batch
data and automatically stops after data processing is complete.

ModelArts
Inference Deployment 1 Introduction to Inference

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Managing AI Applications

Introduction to AI Application Management

Creating an AI Application

Viewing the AI Application List

Viewing Details About an AI Application

Managing AI Application Versions

Viewing Events of an AI Application

2.1 Introduction to AI Application Management
AI development and optimization require frequent iterations and debugging.
Modifications in datasets, training code, or parameters affect the quality of
models. If the metadata of the development process cannot be centrally managed,
the optimal model may fail to be reproduced.

ModelArts imports all meta models obtained through training. You can also create
AI applications using meta models from OBS or container images. In this way, you
can centrally manage all iterated and debugged AI applications.

Constraints
● In an ExeML project, after a model is deployed, the model is automatically

uploaded to the AI application list. However, AI applications generated by
ExeML cannot be downloaded and can be used only for deployment and
rollout.

● AI application creation and AI application version management are available
for free to all users.

Scenarios for Creating AI Applications
● Imported from a training job: Create a training job in ModelArts and train a

model. After obtaining a satisfactory model, use it to create an AI application
and deploy the application as services.

● Imported from OBS: If you use a mainstream framework to develop and train
a model locally, you can upload the model to an OBS bucket based on the

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

model package specifications, import the model from OBS to ModelArts, and
use the model to create an AI application for service deployment.

● Imported from a container image: If an AI engine is not supported by
ModelArts, you can use it to build a model, import the model to ModelArts as
a custom image, use the image to create an AI application, and deploy the AI
application as services.

● Imported from a template: Since the configurations of models with the
same functions are similar, ModelArts integrates the configurations of such
models into a general template. By using this template, you can easily and
quickly import models and create AI applications without writing the
config.json configuration file.

NO TE

Importing a model from a template will be unavailable soon. After it goes offline, you
can use the templates for AI engine and model configurations by choosing OBS,
setting AI Engine to Custom, and importing your custom AI engine.

AI Application-related Functions

Table 2-1 AI application-related functions

Supported
Function

Description

Creating an AI
Application

Import the trained models to ModelArts and create AI
applications for centralized management. The following
provides the operation guide for each method of importing
models.
● Importing a Meta Model from a Training Job
● Importing a Meta Model from OBS
● Importing a Meta Model from a Container Image
● Importing a Meta Model from a Template

Viewing Details
About an AI
Application

After an AI application is created, you can view its
information on the details page.

Managing AI
Application
Versions

To facilitate traceback and model tuning, ModelArts
provides the AI application version management function.
You can manage AI applications by version.

Supported AI Engines for ModelArts Inference
If you import a model from a template or OBS to create an AI application, the
following AI engines and versions are supported.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

NO TE

● Runtime environments marked with recommended are unified runtime images, which
will be used as mainstream base inference images. The installation packages of unified
images are richer. For details, see Base Inference Images.

● Images of the old version will be discontinued. Use unified images.
● The base images to be removed are no longer maintained.
● Naming a unified runtime image: <AI engine name and version> - <Hardware and

version: CPU, CUDA, or CANN> - <Python version> - <OS version> - <CPU architecture>

Table 2-2 Supported AI engines and their runtime

Engine Runtime Note

TensorFlow python3.6
python2.7
(unavailable soon)
tf1.13-python3.6-gpu
tf1.13-python3.6-cpu
tf1.13-python3.7-cpu
tf1.13-python3.7-gpu
tf2.1-python3.7
(unavailable soon)
tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64
(recommended)

● TensorFlow 1.8.0 is used in
python2.7 and python3.6.

● python3.6, python2.7, and tf2.1-
python3.7 indicate that the model
can run on both CPUs and GPUs.
For other runtime values, if the
suffix contains cpu or gpu, the
model can run only on CPUs or
GPUs.

● The default runtime is python2.7.

Spark_MLlib python2.7
(unavailable soon)
python3.6
(unavailable soon)

● Spark_MLlib 2.3.2 is used in
python2.7 and python3.6.

● The default runtime is python2.7.
● python2.7 and python3.6 can

only be used to run models on
CPUs.

Scikit_Learn python2.7
(unavailable soon)
python3.6
(unavailable soon)

● Scikit_Learn 0.18.1 is used in
python2.7 and python3.6.

● The default runtime is python2.7.
● python2.7 and python3.6 can

only be used to run models on
CPUs.

XGBoost python2.7
(unavailable soon)
python3.6
(unavailable soon)

● XGBoost 0.80 is used in python2.7
and python3.6.

● The default runtime is python2.7.
● python2.7 and python3.6 can

only be used to run models on
CPUs.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0038.html

Engine Runtime Note

PyTorch python2.7
(unavailable soon)
python3.6
python3.7
pytorch1.4-python3.7
pytorch1.5-python3.7
(unavailable soon)

pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64
(recommended)

● PyTorch 1.0 is used in python2.7,
python3.6, and python3.7.

● python2.7, python3.6, python3.7,
pytorch1.4-python3.7, and
pytorch1.5-python3.7 indicate
that the model can run on both
CPUs and GPUs.

● The default runtime is python2.7.

MindSpore aarch64
(recommended)

AArch64 can run only on Snt3 chips.

2.2 Creating an AI Application

2.2.1 Importing a Meta Model from a Training Job
You can create a training job in ModelArts to obtain a satisfactory model. Then,
you can import the model to AI Application Management for centralized
management. In addition, you can quickly deploy the model as a service.

Constraints
● A model generated from a training job that uses a subscribed algorithm can

be directly imported to ModelArts without the need to use the inference code
or configuration file.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The training job has been successfully executed, and the model has been

stored in the OBS directory where the training output is stored (the input
parameter is train_url).

● If a model is generated from a training job that uses a frequently-used
framework or custom image, upload the inference code and configuration file
to the storage directory of the model by referring to Introduction to Model
Package Specifications.

● The OBS directory you use and ModelArts are in the same region.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

Creating an AI Application
1. Log in to the ModelArts console, and choose AI Applications from the

navigation pane. The AI Applications page is displayed.
2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-3.

Table 2-3 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Training job. For details about the parameters, see
Table 2-4.

Figure 2-1 Setting a training job as the meta model source

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Table 2-4 Parameters of the meta model source

Parameter Description

Meta
Model
Source

Choose Training Job > Training Jobs or Training Job >
Training Jobs (New).
● Choose a training job that has executed under the

current account and a training version.
● Dynamic loading: enabled for quick deployment and

model update. If this function is selected, model files
and runtime dependencies are pulled only during an
actual deployment. Enable this function if a single
model file is larger than 5 GB.

NOTE
ModelArts provides model training of both the new and old
versions. Training management of the old version is only
available for its existing users.

AI Engine Inference engine used by the meta model. The engine is
automatically matched based on the training job you
select.

Inference
Code

Set inference code for an AI application. The code is used
to customize the inference processing logic. Display the
inference code URL. You can copy this URL directly.

Runtime
Dependenc
y

List the dependencies of the selected model in the
environment. For example, if tensorflow is used and the
installation method is pip, the version must be 1.8.0 or
later.

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. A maximum of three
AI application descriptions are supported.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

c. Confirm the configurations and click Create now. The AI application is

created.
In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure
Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

2.2.2 Importing a Meta Model from a Template
NO TE

Importing a model from a template will be unavailable soon. After it goes offline, you can
use the templates for AI engine and model configurations by choosing OBS, setting AI
Engine to Custom, and importing your custom AI engine.

Because the configurations of models with the same functions are similar,
ModelArts integrates the configurations of such models into a common template.
By using this template, you can easily and quickly create AI applications without
compiling the config.json configuration file. For details about the template, see
Introduction to Model Templates.

Constraints
● For details about the supported templates, see Supported Templates. For

details about the input and output modes of each template, see Supported
Input and Output Modes.

● Creating and managing AI applications is free of charge.

Prerequisites
● Ensure that you have uploaded the model to OBS according to the model

package specifications of the corresponding template.
● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts console, and choose AI Applications from the

navigation pane. The AI Applications page is displayed.
2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-5.

Table 2-5 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Parameter Description

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Template. For details about the parameters, see Table
2-6.

Table 2-6 Parameters of the meta model source

Parameter Description

Model
Template

Select a template from the existing ModelArts template
list , such as TensorFlow-based image classification
template.
ModelArts also provides three filter criteria: Type, Engine,
and Environment, helping you quickly find the desired
template. If the three filter criteria cannot meet your
requirements, you can enter keywords to search for the
target template. For details about the supported
templates, see Supported Templates.

Model
Directory

OBS path where a model is saved. Select an OBS path for
storing the model based on the input requirements of the
selected model template.
The OBS path cannot contain spaces. Otherwise, the AI
application fails to be created.
NOTE

● If you select an encrypted bucket or file, the import will fail.
● If a training job is executed for multiple times, different

version directories are generated, such as V001 and V002, and
the generated models are stored in the model folder in
different version directories. When selecting model files,
specify the model folder in the corresponding version
directory.

Dynamic
Loading

Quick deployment and model update. If this function is
selected, model files and runtime dependencies are
pulled only during an actual deployment. Select this
function if the size of a single model file exceeds 5 GB.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Parameter Description

Input and
Output
Mode

If the default input and output mode of the selected
template can be overwritten, you can select an input and
output mode based on the AI application function or
application scenario. Input and Output Mode is an
abstract of the API (apis) in config.json. It describes the
interface provided by the AI application for external
inference. An input and output mode describes one or
more APIs, and corresponds to a template.
For example, for TensorFlow-based image classification
template, Input and Output Mode supports Built-in
image processing mode. The input and output mode
cannot be modified in the template. Therefore, you can
only view but not modify the default input and output
mode of the template on the page.
For details about the supported input and output modes,
see Supported Input and Output Modes.

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. You can add up to
three AI application descriptions.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

c. Check the information and click Next. The AI application is created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure
Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

2.2.3 Importing a Meta Model from OBS
In scenarios where frequently-used frameworks are used for model development
and training, you can import the model to ModelArts and use it to create an AI
application for unified management.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Constraints
● The imported model for creating an AI application, inference code, and

configuration file must comply with the requirements of ModelArts. For
details, see Introduction to Model Package Specifications, Specifications
for Editing a Model Configuration File , and Specifications for Writing
Model Inference Code .

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The model has been developed and trained, and the type and version of the

AI engine used by the model are supported by ModelArts. For details, see
Supported AI Engines for ModelArts Inference.

● The trained model package, inference code, and configuration file have been
uploaded to OBS.

● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-7.

Table 2-7 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to OBS. For details about the parameters, see Table 2-8.
For the meta model imported from OBS, edit the inference code and
configuration files by following model package specifications and place
the inference code and configuration files in the model folder storing the

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

meta model. If the selected directory does not comply with the model
package specifications, the AI application cannot be created.

Table 2-8 Parameters of the meta model source

Parameter Description

Meta
Model

OBS path for storing the meta model.
The OBS path cannot contain spaces. Otherwise, the AI
application fails to be created.

AI Engine The AI engine automatically associates with the meta
model storage path you select.
If AI Engine is set to Custom, you must specify the
protocol and port number in Container API for starting
the model. The request protocol is HTTPS, and the port
number is 8080.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Parameter Description

Health
Check

Health check on a model. After you select an AI engine
that supports health check and runtime environment, this
parameter is displayed. When AI Engine is set to Custom,
you must configure health check in the image. Otherwise,
the service deployment will fail.
● Check Mode: Select HTTP request or Command.

When a custom engine is used, you can select HTTP
request or Command.
When a non-custom engine is used, you can select
only HTTP request.

● Health Check URL: This parameter is displayed when
Check Mode is set to HTTP request. Enter the health
check URL. The default value is /health.

● Health Check Command: This parameter is displayed
when Check Mode is set to Command. Enter the
health check command.

● Health Check Period: Enter an integer ranging from 1
to 2147483647. The unit is second.

● Delay(seconds): specifies the delay for performing
the health check after the instance is started. Enter an
integer ranging from 0 to 2147483647.

● Maximum Failures: Enter an integer ranging from 1
to 2147483647. During service startup, if the number
of consecutive health check failures reaches the
specified value, the service will be abnormal. During
service running, if the number of consecutive health
check failures reaches the specified value, the service
will enter the alarm status.

NOTE
To use a custom engine to create an AI application, ensure that
the custom engine complies with the specifications for custom
engines. For details, see Creating an AI Application Using a
Custom Engine.
If health check is configured for an AI application, the deployed
services using this AI application will stop 3 minutes after
receiving the stop instruction.

Dynamic
Loading

Quick deployment and model update. If it is selected,
model files and runtime dependencies are only pulled
during an actual deployment. Enable this function if a
single model file is larger than 5 GB.

Runtime
Dependenc
y

List the dependencies of the selected model in the
environment. For example, if tensorflow is used and the
installation method is pip, the version must be 1.8.0 or
later.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0230.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0230.html

Parameter Description

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. You can add up to
three AI application descriptions.

Configurati
on File

By default, the system associates the configuration file
stored in OBS. After enabling this function, you can view
and edit the model configuration file.
NOTE

This function is to be taken offline. After that, you can modify
the model configuration by setting AI Engine, Runtime
Dependency, and Apis.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

API
Configurati
on

After enabling this function, you can edit RESTful APIs to
define the input and output formats of an AI application.
The model APIs must comply with ModelArts
specifications. For details, see Specifications for Editing
a Model Configuration File. For details about the code
example, see Code Example of apis Parameters.

c. Check the information and click Create now. The AI application is

created.
In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure

Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

2.2.4 Importing a Meta Model from a Container Image
For AI engines that are not supported by ModelArts, you can import the models
you compile to ModelArts from custom images.

Constraints
● For details about the specifications and description of custom images, see

Custom Image Specifications for Creating AI Applications.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html

● The configuration file must be provided for a model that you have developed
and trained. The file must comply with ModelArts specifications. For details,
see Specifications for Editing a Model Configuration File . After the writing
is completed, upload the file to the specified OBS directory.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-9.

Table 2-9 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Container image. For details about the parameters, see
Table 2-10.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

Figure 2-2 Setting a container image as the meta model source

Table 2-10 Parameters of the meta model source

Parameter Description

Container Image
Path Click to import the model image from the

container image. The model is of the Image type,
and you do not need to use swr_location in the
configuration file to specify the image location.
For details about operation guidance and
requirements for creating a custom image, see
Custom Image Specifications for Creating AI
Applications.
NOTE

The model image you select will be shared with the
system administrator, so ensure you have the permission
to share the image (images shared with other accounts
are not supported). When you deploy a service, ModelArts
deploys the image as an inference service. Ensure that
your image can be properly started and provide an
inference API.

Container API Protocol and port number for starting an AI
application
NOTE

The default request protocol and port number provided by
ModelArts are HTTP and 8080, respectively. Set them
based on the actual custom image.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html

Parameter Description

Image
Replication

Indicates whether to copy the model image in the
container image to ModelArts.
● When this function is disabled, the model image

is not copied, AI applications can be created
quickly, but modifying or deleting images in the
source directory of SWR may affect service
deployment.

● When this function is enabled, the model image
is copied, AI applications cannot be created
quickly, but you can modify or delete images in
the source directory of SWR as that would not
affect service deployment.

NOTE
You must enable this function if you want to use images
shared by others. Otherwise, AI applications will fail to be
created.

Health Check Health check on an AI application. This parameter is
configurable only when the health check API is
configured in the custom image. Otherwise, the AI
application deployment will fail.
● Check Mode: Select HTTP request or

Command.
● Health Check URL: This parameter is displayed

when Check Mode is set to HTTP request. Enter
the health check URL. The default value is /
health.

● Health Check Command: This parameter is
displayed when Check Mode is set to
Command. Enter the health check command.

● Health Check Period: Enter an integer ranging
from 1 to 2147483647. The unit is second.

● Delay(seconds): specifies the delay for
performing the health check after the instance is
started. Enter an integer ranging from 0 to
2147483647.

● Maximum Failures: Enter an integer ranging
from 1 to 2147483647. During service startup, if
the number of consecutive health check failures
reaches the specified value, the service will be
abnormal. During service running, if the number
of consecutive health check failures reaches the
specified value, the service will enter the alarm
status.

NOTE
If health check is configured for an AI application, the
deployed services using this AI application will stop 3
minutes after receiving the stop instruction.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Parameter Description

AI Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use
your applications. Click Add AI Application
Description and set the Document name and URL.
You can add up to three AI application descriptions.

Deployment
Type

Select the service types that the application can be
deployed. When deploying a service, only the
service types selected here are available. For
example, if you only select Real-time services here,
you can only deploy the AI application as a real-
time service after it is created.

Start command Customizable start command of a model

Apis When you enable this function, you can edit
RESTful APIs to define the AI application input and
output formats. The model APIs must comply with
ModelArts specifications. For details, see
Specifications for Editing a Model Configuration
File. For details about the code example, see Code
Example of apis Parameters.

c. Check the information and click Next. The AI application is created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure
Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

2.3 Viewing the AI Application List
You can view all created AI applications on the AI application list page. The AI
application list page displays the following information.

Table 2-11 AI application list

Parameter Description

AI Application
Name

Name of an AI application.

Latest Version Latest version of an AI application.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Parameter Description

Status Status of an AI application.

Deployment Type Types of the services that an AI application can be
deployed as.

Versions Number of AI application versions.

Request Mode Request mode of real-time services.
● Synchronous request: one-off inference with results

returned synchronously (within 60s). This mode is
suitable for images and small videos.

● Asynchronous request: one-off inference with results
returned asynchronously (over 60s). This mode is
suitable for real-time video inference and large videos.

Created Time when an AI application is created.

Description Description of an AI application.

Operation ● Create Version: Create an AI application version. The
settings of the last version are used by default, except
for the version. You can change the parameter settings.

● Delete: Delete the AI application.
NOTE

If an AI application version has been deployed as a service, you
must delete the associated service before deleting the AI
application version. A deleted AI application cannot be
recovered.

Click the check box next to the AI application name to display the hidden view at
the bottom of the list, where you can see the version list. (If the view is not

displayed, click in the bottom right corner.)

Figure 2-3 Version list

The version list displays the following information.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Table 2-12 Version list

Parameter Description

Version Current version of an AI application.

Status Status of an AI application.

Deployment Type Types of the services that an AI application can be
deployed as.

Model Size Size of an AI application.

Model Source Model source of an AI application.

Created Time when an AI application is created.

Description Description of an AI application.

Operation ● Deploy: Deploy an AI application as real-time services,
batch services, or edge services.

● Delete: Delete a version of an AI application.

2.4 Viewing Details About an AI Application
After an AI application is created, you can view its information on the details page.

1. Log in to the ModelArts console, and choose AI Applications from the
navigation pane. The My AI Applications tab is displayed by default.

2. Click the name of the target AI application. The application details page is
displayed.
On the application details page, you can view the basic information and
model precision of the AI application, and switch tab pages to view more
information.

Table 2-13 Basic information about an AI application

Parameter Description

Name Name of an AI application

Status Status of an AI application

Version Current version of an AI application

ID ID of an AI application

Description Click the edit button to add the description of an AI
application.

Deployment Type Types of the services that an AI application can be
deployed

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Parameter Description

Meta Model
Source

Source of the meta model, which can be training jobs,
OBS, or container images.

Training Name Associated training job if the meta model comes from a
training job. Click the training job name to go to its
details page.

Training Version Training job version if the meta model comes from an
old-version training job.

Storage path of
the meta model

Path to the meta model if the meta model comes from
OBS.

Container Image
Storage Path

Path to the container image if the meta model comes
from a container image.

AI Engine AI engine if the meta model comes from a training job
or OBS.

Engine Package
Address

Engine package address if the meta model comes from
OBS and AI Engine is Custom.

Runtime
Environment

Runtime environment on which the meta model
depends if the meta model comes from a training job
or OBS and a preset AI engine is used.

Container API Protocol and port number for starting the AI
application if the meta model comes from OBS (AI
Engine is Custom) or a container image.

Inference Code Path to the inference code if the meta model comes
from an olde-version training job.

Image
Replication

Image replication status if the meta model comes from
OBS or a container image.

Dynamic loading Dynamic loading status if the meta model comes from
a training job or OBS.

Size Size of an AI application

Health Check Health check status if the meta model comes from OBS
or a container image. If health check is enabled, the
following parameters are displayed: Check Mode,
Health Check URL, Health Check Period, Delay, and
Maximum Failures.

AI Application
Description

Description document added during the creation of an
AI application.

Instruction Set
Architecture

System architecture.

Inference
Accelerator

Type of inference accelerator cards.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Table 2-14 Details page of an AI application

Parameter Description

Model Precision Model recall, precision, accuracy, and F1 score of an AI
application

Parameter
Configuration

API configuration, input parameters, and output
parameters of an AI application

Runtime
Dependency

Model dependency on the environment. If creating a
job failed, edit the runtime dependency. After the
modification is saved, the system will automatically use
the original image to create the job again.

Events The progress of key operations during AI application
creation
Events are stored for three months and will be
automatically cleared then.
For details about how to view events of an AI
application, see Viewing Events of an AI Application.

Constraint Displays the constraints of service deployment, such as
the request mode, boot command, and model
encryption, based on the settings during AI application
creation. For AI applications in asynchronous request
mode, parameters including the input mode, output
mode, service startup parameters, and job configuration
parameters can be displayed.

Associated
Services

The list of services that an AI application was deployed.
Click a service name to go to the service details page.

2.5 Managing AI Application Versions
To facilitate source tracing and repeated AI application tuning, ModelArts provides
the AI application version management function. You can manage models based
on versions.

Prerequisites

An AI application has been created in ModelArts.

Creating a New Version

On the AI Application Management > AI Applications page, click Create
Version in the Operation column of the target AI application. On the Create
Version page, set the parameters. For details, see Creating an AI Application.
Click Create now.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Deleting a Version

On the AI Application Management > AI Applications page, click the option
button on the left of the AI application name to display the application version
list. In the application version list, click Delete in the Operation column to delete
the corresponding version.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted version cannot be
recovered. Exercise caution when performing this operation.

Deleting an AI Application

In the navigation pane, choose AI Application Management > AI Applications.
On the AI Applications page, click Delete in the Operation column to delete the
target AI application.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted AI application
cannot be recovered. Exercise caution when performing this operation.

2.6 Viewing Events of an AI Application
During the creation of an AI application, every key event is automatically recorded.
You can view the events on the details page of the AI application at any time.

This helps you better understand the process of creating an AI application and
locate faults more accurately when a task exception occurs. The following table
lists the available events.

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The model starts to import. -

Abnormal Failed to create the image. Locate and rectify
the fault based on
the error
information. FAQ

Abnormal The custom image does not support
specified dependencies.

The runtime
dependencies cannot
be configured when
a custom image is
imported. Install the
pip dependency
package in the
Dockerfile that is
used to create the
image. FAQ

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0243.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Only custom images support
swr_location.

Delete the
swr_location field
from the model
configuration file
config.json and try
again.

Abnormal The health check API of a custom
image must be xxx.

Modify the health
check API of the
custom image and
try again.

Normal The image creation task is in the xxx
state.

-

Abnormal Label xxx does not exist in image xxx. Contact technical
support.

Abnormal Invalid parameter value xxx exists in
the model configuration file.

Delete invalid
parameters from the
model configuration
file and try again.

Abnormal Failed to obtain the labels of image
xxx.

Contact technical
support.

Abnormal Failed to import data because xxx is
larger than xxx GB.

The size of the
model or image
exceeds the upper
limit. Downsize the
model or image and
import it again. FAQ

Abnormal User xxx does not have OBS
permission obs:object:PutObjectAcl.

The IAM user does
not have the
obs:object:PutObject
Acl permission on
OBS. Add the agency
permission for the
IAM user. FAQ

Abnormal Creating the image timed out. The
timeout duration is xxx minutes.

There is a timeout
limit for image
building using
ImagePacker.
Simplify the code to
improve efficiency.
FAQ

Normal Model description updated. -

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0257.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0262.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal Model runtime dependencies not
updated.

-

Normal Model runtime dependencies
updated. Recreating the image.

-

Abnormal SWR traffic control triggered. Try
again later.

SWR traffic control
triggered. Try again
later.

Normal The system is being upgraded. Try
again later.

-

Abnormal Failed to obtain the source image. An
error occurred in authentication. The
token has expired.

Contact technical
support.

Abnormal Failed to obtain the source image.
Check whether the image exists.

Contact technical
support.

Normal Source image size calculated. -

Normal Source image shared. -

Abnormal Failed to create the image due to
traffic control. Try again later.

Traffic control
triggered. Try again
later.

Abnormal Failed to send the image creation
request.

Contact technical
support.

Abnormal Failed to share the source image.
Check whether the image exists or
whether you have the permission to
share the image.

Check whether the
image exists or
whether you have
the permission to
share the image.

Normal The model imported. -

Normal Model file imported. -

Normal Model size calculated. -

Abnormal Failed to import the model. For details about
how to locate and
rectify the fault, see
FAQ.

Abnormal Failed to copy the model file. Check
whether you have the OBS
permission.

Check whether you
have the OBS
permission. FAQ

Abnormal Failed to schedule the image creation
task.

Contact technical
support.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0204.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to start the image creation
task.

Contact technical
support.

Abnormal The Roman image has been created
but cannot be shared with resource
tenants.

Contact technical
support.

Normal Image created. -

Normal The image creation task started. -

Normal The environment image creation task
started.

-

Normal The request for creating an
environment image received.

-

Normal The request for creating an image
received.

-

Normal An existing environment image is
used.

-

Abnormal Failed to create the image. For
details, see image creation logs.

View the build logs
to locate and rectify
the fault. FAQ

Abnormal Failed to create the image due to an
internal system error. Contact
technical support.

Contact technical
support.

Abnormal Failed to import model file xxx
because it is larger than 5 GB.

The size of the
model file xxx is
greater than 5 GB.
Downsize the model
file and try again, or
use dynamic loading
to import the model
file. FAQ

Abnormal Failed to create the OBS bucket due
to an internal system error. Contact
technical support.

Contact technical
support.

Abnormal Failed to calculate the model size.
Subpath xxx does not exist in path
xxx.

Correct the subpath
and try again, or
contact technical
support.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0204.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0258.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to calculate the model size.
The model of the xxx type does not
exist in path xxx.

Check the storage
location of the
model of the xxx
type, correct the
path, and try again,
or contact technical
support.

Warning Failed to calculate the model size.
More than one xxx model file is
stored in path xxx.

-

During AI application creation, key events can both be manually and automatically
refreshed.

Viewing Events
1. In the navigation pane of the ModelArts management console, choose AI

Application Management > AI Applications. In the AI application list, click
the name of the target AI application to go to its details page.

2. View the events on the Events tab page.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

3 Deploying an AI Application as a Service

Deploying AI Applications as Real-Time Services

Deploying AI Applications as Batch Services

Upgrading a Service

Starting, Stopping, Deleting, or Restarting a Service

Viewing Service Events

3.1 Deploying AI Applications as Real-Time Services

3.1.1 Deploying as a Real-Time Service
After an AI application is prepared, you can deploy it as a real-time service and
call the service for prediction.

Constraints

A maximum of 20 real-time services can be deployed by a user.

Prerequisites
● Data has been prepared. Specifically, you have created an AI application in the

Normal state in ModelArts.
● The account is not in arrears to ensure available resources for service running.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Real-Time Services. The real-time service list
is displayed by default.

2. In the real-time service list, click Deploy in the upper left corner. The Deploy
page is displayed.

3. Set parameters for a real-time service.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

a. Set basic information about model deployment. For details about the
parameters, see Table 3-1.

Table 3-1 Basic parameters

Parameter Description

Name Name of the real-time service. Set this parameter as
prompted.

Auto Stop After this parameter is enabled and the auto stop time
is set, a service automatically stops at the specified
time. If this parameter is disabled, a real-time service
keeps running and billing. The function can help you
avoid unnecessary billing. The auto stop function is
enabled by default, and the default value is 1 hour
later.
The options are 1 hour later, 2 hours later, 4 hours
later, 6 hours later, and Custom. If you select Custom,
you can enter any integer from 1 to 24 hours in the
text box on the right.

Description Brief description of the real-time service.

b. Enter key information including the resource pool and AI application

configurations. For details, see Table 3-2.

Table 3-2 Parameters

Param
eter

Sub-
Parame
ter

Description

Resour
ce Pool

Public
Resourc
e Pool

CPU/GPU computing resources are available for
you to select. Pricing standards for resource pools
with different flavors are different. For details, see
Product Pricing Details. The public resource pool
only supports the pay-per-use billing mode.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/ecs

Param
eter

Sub-
Parame
ter

Description

Dedicat
ed
Resourc
e Pool

Select a specification from the dedicated resource
pool specifications. The physical pools with logical
subpools created are not supported temporarily.
NOTE

● The data of old-version dedicated resource pools will
be gradually migrated to the new-version dedicated
resource pools.

● For new users and the existing users who have
migrated data from old-version dedicated resource
pools to new ones, there is only one entry to new-
version dedicated resource pools on the ModelArts
management console.

● For the existing users who have not migrated data
from old-version dedicated resource pools to new
ones, there are two entries to dedicated resource
pools on the ModelArts management console, where
the entry marked with New is to the new version.

For details about the new version of dedicated resource
pools, see Comprehensive Upgrades to ModelArts
Resource Pool Management Functions.

AI
Applic
ation
and
Config
uration

AI
Applicat
ion
Source

Select My AI Applications or My Subscriptions
based on your requirements.

AI
Applicat
ion and
Version

Select the AI application and version that are in the
Normal state.

Traffic
Ratio
(%)

Set the traffic proportion of the current instance
node. Service calling requests are allocated to the
current version based on this proportion.
If you deploy only one version of an AI application,
set this parameter to 100%. If you select multiple
versions for gray release, ensure that the sum of
the traffic ratios of these versions is 100%.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Param
eter

Sub-
Parame
ter

Description

Specific
ations

Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used in the current environment.
If specifications in the public resource pools are
unavailable, no public resource pool is available in
the current environment. In this case, use a
dedicated resource pool or contact the
administrator to create a public resource pool.
NOTE

When the selected flavor is used to deploy the service,
necessary system consumption is generated. Therefore,
the resources actually occupied by the service are slightly
greater than the selected flavor.

Comput
e Nodes

Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If
you set the number of nodes to a value greater
than 1, the distributed computing mode is used.
Select a computing mode based on the actual
requirements.

Environ
ment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information such as plaintext passwords in
environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Add AI
Applicat
ion
Version
and
Configu
ration

If the selected AI application has multiple versions,
you can add multiple versions and configure a
traffic ratio. You can use gray launch to smoothly
upgrade the AI application version.
NOTE

Free compute specifications do not support the gray
launch of multiple versions.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Param
eter

Sub-
Parame
ter

Description

Mount
Storage

This parameter is displayed when the resource pool
is a dedicated resource pool. This function will
mount a storage volume to compute nodes
(compute instances) as a local directory when the
service is running. It is recommended when the
model or input data is large. Only OBS parallel file
systems are supported.
● Source Path: Select the storage path of the

parallel file. A cross-region OBS parallel file
system cannot be selected.

● Mount Path: Enter the mount path of the
container, for example, /obs-mount/.
– Select a new directory. If you select an

existing directory, existing files will be
overwritten. OBS mounting allows you to
add, view, and modify files in the mount
directory but does not allow you to delete
files in the mount directory. To delete files,
manually delete them in the OBS parallel file
system.

– It is a good practice to mount the container
to an empty directory. If the directory is not
empty, ensure that there are no files
affecting container startup in the directory.
Otherwise, such files will be replaced,
resulting in failures to start the container and
create the workload.

– The mount path must start with a slash (/)
and can contain a maximum of 1,024
characters, including letters, digits, and the
following special characters: \ _ -.

NOTE
Storage mounting can be used only by services deployed
in a dedicated resource pool.

Traffic
Limit

N/A Maximum number of times a service can be
accessed within a second. You can set this
parameter as needed.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Param
eter

Sub-
Parame
ter

Description

WebSo
cket

N/A Whether to deploy a real-time service as a
WebSocket service. For details about WebSocket
real-time services, see Full-Process Development
of WebSocket Real-Time Services.
NOTE

● This function is supported only if the AI application is
WebSocket-compliant and comes from a container
image.

● After this function is enabled, Traffic Limit and Data
Collection cannot be set.

● This parameter cannot be changed after the service is
deployed.

Runtim
e Log
Output

N/A This function is disabled by default. The runtime
logs of real-time services are stored only in the
ModelArts log system. You can query the runtime
logs on the Logs tab of the service details page.
If this function is enabled, the runtime logs of real-
time services will be exported and stored in Log
Tank Service (LTS). LTS automatically creates log
groups and log streams and caches run logs
generated within seven days by default. For details
about the LTS log management function, see Log
Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for the log query and log storage

functions provided by LTS. For details, see section LTS
Pricing Details.

● Do not print unnecessary audio log files. Otherwise,
system logs may fail to be displayed, and the error
message "Failed to load audio" may be displayed.

Applic
ation
Authen
ticatio
n

Applicat
ion

Disabled by default. To enable this function, see
Access Authenticated Using an Application for
details and set the parameters as required.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0234.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0234.html
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Figure 3-1 Setting AI application information

c. (Optional) Configure advanced settings.

Table 3-3 Advanced settings

Parameter Description

Tags ModelArts can work with Tag Management Service
(TMS). When creating resource-consuming tasks in
ModelArts, for example, training jobs, configure
tags for these tasks so that ModelArts can use tags
to manage resources by group.
For details about how to use tags, see How Does
ModelArts Use Tags to Manage Resources by
Group?
NOTE

You can select a predefined TMS tag from the tag drop-
down list or customize a tag. Predefined tags are
available to all service resources that support tags.
Customized tags are available only to the service
resources of the user who has created the tags.

4. After confirming the entered information, complete service deployment as
prompted. Generally, service deployment jobs run for a period of time, which
may be several minutes or tens of minutes depending on the amount of your
selected data and resources.

NO TE

After a real-time service is deployed, it is started immediately.

You can go to the real-time service list to check whether the deployment of
the real-time service is complete. In the real-time service list, after the status
of the newly deployed service changes from Deploying to Running, the
service is deployed successfully.

3.1.2 Viewing Service Details
After an AI application is deployed as a real-time service, you can access the
service page to view its details.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html

2. On the Real-Time Services page, click the name of the target service. The
service details page is displayed.

You can view the service name, status, and other information. For details, see
Table 3-4.

Table 3-4 real-time service parameters

Parameter Description

Name Name of the real-time service.

Status Status of the real-time service.

Source AI application source of the real-time service.

Service ID Real-time service ID

Description Service description, which can be edited after you click the
edit button on the right side.

Resource
Pool

Resource pool specifications used by the service. If the
public resource pool is used for deployment, this parameter
is not displayed.

Custom
Settings

Customized configurations based on real-time service
versions. This allows version-based traffic distribution
policies and configurations. Enable this option and click
View Settings to customize the settings. For details, see
Modifying Customized Settings.

Traffic Limit Maximum number of times a service can be accessed within
a second.

Runtime Log
Output

This function is disabled by default. The runtime logs of
real-time services are stored only in the ModelArts log
system.
If this function is enabled, the runtime logs of real-time
services will be exported and stored in Log Tank Service
(LTS). LTS automatically creates log groups and log streams
and caches run logs generated within seven days by default.
For details about the LTS log management function, see Log
Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for the log query and log storage functions

provided by LTS. For details, see section LTS Pricing Details.
● Do not print unnecessary audio log files. Otherwise, system logs

may fail to be displayed, and the error message "Failed to load
audio" may be displayed.

WebSocket Whether to upgrade to the WebSocket service.

3. Switch between tabs on the details page of a real-time service to view more
details. For details, see Table 3-5.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Table 3-5 Details of a real-time service

Parameter Description

Usage Guides This page displays the API URL, AI application
information, input parameters, and output parameters.
You can click to copy the API URL to call the service.
If application authentication is supported, you can view
the API URL and authorization management details,
including the application name, AppKey, and AppSecret,
in the Usage Guides. You can also add or cancel
authorization for an application.

Prediction You can perform real-time prediction on this page. For
details, see Testing the Deployed Service.

Configuration
Updates

This page displays Current Configurations and Update
History.
● Current Configurations: AI application name,

version, status, compute node specifications, traffic
ratio, number of compute nodes, deployment
timeout interval, environment variables, storage
mounting, and resource pool information (for
services deployed in a dedicated resource pool)

● Update History: historical AI application
information.

Monitoring This page displays resource usage and AI application
calls.
● Resource Usage: includes the used and available

CPU, memory, GPU, and NPU resources.
● AI Application Calls: indicates the number of AI

application calls. The statistics collection starts after
the AI application status changes to Ready. (This
parameter is not displayed for WebSocket services.)

Event This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Service Events.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Parameter Description

Logs This page displays the log information about each AI
application in the service. You can view logs generated
in the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining the time segment.
If this function is enabled, the logs stored in LTS will be
displayed. You can click View Complete Logs on LTS to
view all logs.
Meet the following rules to search logs:
● Do not enter strings that contain any following

delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● Enter keywords for exact search. A keyword is a word

between two adjacent delimiters.
● Enter keywords for fuzzy search. For example, you

can enter error, er?or, rro*, or er*r.
● Enter phrases for exact search. For example, Start to

refresh.
● Before enabling this function, you can combine

keywords with AND (&&) or OR (||). For example,
query logs&&erro* or query logs||erro*. After
enabling this function, you can combine keywords
with AND or OR. For example, query logs AND
erro* or query logs OR erro*.

Tags Tags that have been added to the service. Tags can be
added, modified, and deleted.
For details about how to use tags, see How Does
ModelArts Use Tags to Manage Resources by Group?

Modifying Customized Settings
A customized configuration rule consists of the configuration condition (Setting),
access version (Version), and customized running parameters (including Setting
Name and Setting Value).

You can configure different settings with customized running parameters for
different versions of a real-time service.

The priorities of customized configuration rules are in descending order. You can
change the priorities by dragging the sequence of customized configuration rules.

After a rule is matched, the system will no longer match subsequent rules. A
maximum of 10 configuration rules can be configured.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html

Table 3-6 Parameters for Custom Settings

Parameter Man
dator
y

Description

Setting Yes Expression of the Spring Expression Language (SPEL) rule.
Only the equal, matches, and hashCode expressions of
the character type are supported.

Version Yes Access version for a customized service configuration rule.
When a rule is matched, the real-time service of the
version is requested.

Setting
Name

No Key of a customized running parameter, consisting of a
maximum of 128 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Setting
Value

No Value of a customized running parameter, consisting of a
maximum of 256 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Customized settings can be used in the following scenarios:

● If multiple versions of a real-time service are deployed for gray release,
customized settings can be used to distribute traffic by user.

Table 3-7 Built-in variables

Built-in Variable Description

DOMAIN_NAME Account name used to call an inference request

DOMAIN_ID Account ID used to call an inference request

PROJECT_NAME Project name that is used to call an inference request

PROJECT_ID Project ID that invokes the inference request

USER_NAME Username that is used to call an inference request

USER_ID User ID that is used to call an inference request

Pound key (#) indicates that a variable is referenced. The matched character
string must be enclosed in single quotation marks.
#{Built-in variable} == 'Character string'
#{Built-in variable} matches 'Regular expression'

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

– Example 1:
If the account name in the inference request is User A, the specified
version is matched.
#DOMAIN_NAME == 'User A'

– Example 2:
If the account name in the inference request starts with op, the specified
version is matched.
#DOMAIN_NAME matches 'op.*'

Table 3-8 Common regular expressions

Characte
r

Description

. Match any single character except \n. To match any
character including \n, use (.|\n).

* Match the subexpression that it follows for zero or multiple
times. For example, zo* can match z and zoo.

+ Match the subexpression that it follows for once or multiple
times. For example, zo+ can match zo and zoo, but cannot
match z.

? Match the subexpression that it follows for zero or one
time. For example, do(es)? can match does or do in does.

^ Match the start of the input string.

$ Match the end of the input string.

{n} n is a non-negative integer, which matches exactly n
number of occurrences of an expression. For example, o{2}
cannot match o in Bob, but can match two os in food.

x|y Match x or y. For example, z|food can match z or food, and
(z|f)ood can match zood or food.

[xyz] Character set, where any single character in it can be
matched. For example, [abc] can match a in plain.

Figure 3-2 Traffic distribution by user

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

● If multiple versions of a real-time service are deployed for gated launch,
customized settings can be used to access different versions through the
header.
Start with #HEADER_ to indicate that the header is referenced as a condition.
#HEADER_{key} == '{value}'
#HEADER_{key} matches '{value}'

– Example 1:
If the header of an inference HTTP request contains a version and the
value is 0.0.1, the condition is met. Otherwise, the condition is not met.
#HEADER_version == '0.0.1'

– Example 2:
If the header of an inference HTTP request contains testheader and the
value starts with mock, the rule is matched.
#HEADER_testheader matches 'mock.*'

– Example 3:
If the header of an inference HTTP request contains uid and the hash
code value meets the conditions described in the following algorithm, the
rule is matched.
#HEADER_uid.hashCode() % 100 < 10

Figure 3-3 Using the header to access different versions

● If a real-time service version supports different runtime configurations, you
can use Setting Name and Setting Value to specify customized runtime
parameters so that different users can use different running configurations.
Example:
When user A accesses the AI application, the user uses configuration A. When
user B accesses the AI application, the user uses configuration B. When
matching a running configuration, ModelArts adds a header to the request
and also the customized running parameters specified by Setting Name and
Setting Value.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Figure 3-4 Customized running parameters added for a customized
configuration rule

3.1.3 Testing the Deployed Service
After an AI application is deployed as a real-time service, you can debug code or
add files for testing on the Prediction tab page. Based on the input request (JSON
text or file) defined by the AI application, the service can be tested in either of the
following ways:

● JSON Text Prediction: If the input type of the AI application of the deployed
service is JSON text, that is, the input does not contain files, you can enter the
JSON code on the Prediction tab page for service testing.

● File Prediction: If the input type of the AI application of the deployed service
is file, including images, audios, and videos, you can add images on the
Prediction tab page for service testing.

NO TE

● If the input type is image, the size of a single image must be less than 8 MB.
● The maximum size of the request body for JSON text prediction is 8 MB.
● Due to the limitation of API Gateway, the duration of a single prediction cannot exceed

40s.
● The following image types are supported: png, psd, jpg, jpeg, bmp, gif, webp, psd, svg,

and tiff.
● If Ascend flavors are used during service deployment, transparent .png images cannot

be predicted because Ascend supports only RGB-3 images.
● This function is used for commissioning. In actual production, you are advised to call

APIs. You can select Access Authenticated Using a Token, Access Authenticated
Using an AK/SK, or Access Authenticated Using an Application based on the
authentication mode.

Input Parameters
After a service is deployed, obtain the input parameters of the service on the
Usage Guides tab page of the service details page.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Figure 3-5 Viewing the Usage Guides tab page

The input parameters displayed on the Usage Guides tab page vary depending on
the AI application source that you select.

● If your metamodel comes from ExeML or a built-in algorithm, the input and
output parameters are defined by ModelArts. For details, see the Usage
Guides tab page. On the Prediction tab page, enter the corresponding JSON
text or file for service testing.

● If you use a custom meta model with the inference code and configuration
file compiled by yourself (Specifications for Writing the Model
Configuration File), ModelArts only visualizes your data on the Usage
Guides tab page. The following figure shows the mapping between the input
parameters displayed on the Usage Guides tab page and the configuration
file.

Figure 3-6 Mapping between the configuration file and Usage Guides

● If your meta model is imported using a model template, the input and output
parameters vary with the template. For details, see the description in
Introduction to Model Templates.

JSON Text Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

2. On the Real-Time Services page, click the name of the target service. The
service details page is displayed. Enter the inference code on the Prediction
tab, and click Predict to perform prediction.

File Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.
2. On the Real-Time Services page, click the name of the target service. The

service details page is displayed. On the Prediction tab page, click Upload
and select a test file. After the file is uploaded successfully, click Predict to
perform a prediction test. In Figure 3-7, the label, position coordinates, and
confidence score are displayed.

Figure 3-7 Image prediction

3.1.4 Accessing Real-Time Services

3.1.4.1 Accessing a Real-Time Service

If a real-time service is in the Running status, the real-time service has been
deployed successfully. This service provides a standard RESTful API for you to call.
Before integrating the API to the production environment, commission the API.

By default, APIs of real-time services are accessed using HTTPS. WebSocket-based
access is also supported. If you select WebSocket during real-time service
deployment, the API URL is a WebSocket address after the service is deployed. For
details, see Accessing a Real-Time Service Through WebSocket.

ModelArts supports the following authentication methods for accessing real-time
services (HTTPS requests are used as an example):

● Access Authenticated Using a Token
● Access Authenticated Using an AK/SK
● Access Authenticated Using an Application

ModelArts allows you to call APIs to access real-time services in the following
ways:

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

● Accessing a Real-Time Service (Public Network Channel)
● Accessing a Real-Time Service (VPC High-Speed Channel)

When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

3.1.4.2 Authentication Mode

3.1.4.2.1 Access Authenticated Using a Token

If a real-time service is in the Running state, it has been deployed successfully.
This service provides a standard RESTful API for users to call. Before integrating
the API to the production environment, commission the API. You can use the
following methods to send an inference request to the real-time service:

● Method 1: Use GUI-based Software for Inference (Postman). (Postman is
recommended for Windows.)

● Method 2: Run the cURL Command to Send an Inference Request. (curl
commands are recommended for Linux.)

● Method 3: Use Python to Send an Inference Request.
● Method 4: Use Java to Send an Inference Request.

Prerequisites
You have obtained a user token, local path to the inference file, URL of the real-
time service, and input parameters of the real-time service.

● For details about how to obtain a user token, see Token-based
Authentication. The real-time service APIs generated by ModelArts do not
support tokens whose scope is domain. Therefore, you need to obtain the
token whose scope is project.

● The local path to the inference file can be an absolute path (for example, D:/
test.png for Windows and /opt/data/test.png for Linux) or a relative path
(for example, ./test.png).

● You can obtain the service URL and input parameters of a real-time service on
the Usage Guides tab page of its service details page.
The API URL is the service URL of the real-time service. If a path is defined for
apis in the model configuration file, the URL must be followed by the user-
defined path, for example, {URL of the real-time service}/predictions/poetry.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0004.html#section0
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0004.html#section0

Figure 3-8 Obtaining the API URL and file prediction input parameters of a
real-time service

Figure 3-9 Obtaining the API URL and text prediction input parameters of a
real-time service

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or install the Postman Chrome extension.

Alternatively, use other software that can send POST requests. Postman 7.24.0
is recommended.

2. Open Postman. Figure 3-10 shows the Postman interface.

Figure 3-10 Postman interface

3. Set parameters on Postman. The following uses image classification as an
example.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

– Select a POST task and copy the API URL to the POST text box. On the
Headers tab page, set Key to X-Auth-Token and Value to the user
token.

NO TE

You can also use the AK and SK to encrypt API calling requests. For details, see
Overview of Session Authentication.

Figure 3-11 Parameter settings

– On the Body tab page, file input and text input are available.

▪ File input
Select form-data. Set KEY to the input parameter of the AI
application, which must be the same as the input parameter of the
real-time service. In this example, the KEY is images. Set VALUE to
an image to be inferred (only one image can be inferred). See Figure
3-12.

Figure 3-12 Setting parameters on the Body tab page

▪ Text input
Select raw and then JSON(application/json). Enter the request body
in the text box below. An example request body is as follows:
{
 "meta": {
 "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
 },
 "data": {
 "req_data": [
 {
 "sepal_length": 3,
 "sepal_width": 1,
 "petal_length": 2.2,
 "petal_width": 4
 }
]
 }
}

meta can carry a universally unique identifier (UUID). When the
inference result is returned after API calling, the UUID is returned to
trace the request. If you do not need this function, leave meta blank.
data contains a req_data array for one or multiple pieces of input
data. The parameters of each piece of data, such as sepal_length

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2

and sepal_width in this example are determined by the AI
application.

4. After setting the parameters, click send to send the request. The result will be
displayed in Response.
– Inference result using file input: Figure 3-13 shows an example. The field

values in the return result vary with the AI application.
– Inference result using text input: Figure 3-14 shows an example. The

request body contains meta and data. If the request contains uuid, uuid
will be returned in the response. Otherwise, uuid is left blank. data
contains a resp_data array for the inference results of one or multiple
pieces of input data. The parameters of each result are determined by the
AI application, for example, sepal_length and predictresult in this
example.

Figure 3-13 File inference result

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Figure 3-14 Text inference result

Method 2: Run the cURL Command to Send an Inference Request

The command for sending inference requests can be input as a file or text.

● File input
curl -kv -F 'images=@Image path' -H 'X-Auth-Token:Token value' -X POST Real-time service URL

– -k indicates that SSL websites can be accessed without using a security
certificate.

– -F indicates file input. In this example, the parameter name is images,
which can be changed as required. The image storage path follows @.

– -H indicates the header of a POST command. X-Auth-Token is the
header key, which is fixed. Token value indicates the user token.

– POST is followed by the API URL of the real-time service.

The following is an example of the cURL command for inference with file
input:
curl -kv -F 'images=@/home/data/test.png' -H 'X-Auth-Token:MIISkAY***80T9wHQ==' -X POST https://
modelarts-infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

● Text input
curl -kv -d '{"data":{"req_data":
[{"sepal_length":3,"sepal_width":1,"petal_length":2.2,"petal_width":4}]}}' -H 'X-Auth-
Token:MIISkAY***80T9wHQ==' -H 'Content-type: application/json' -X POST https://modelarts-
infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

-d indicates the text input of the request body.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Method 3: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see Integrating the Python SDK for API request signing.
2. Create a request body for inference.

– File input
coding=utf-8

import requests

if __name__ == '__main__':
 # Config url, token and file path.
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Auth-Token': token
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result.
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type. The input parameter images obtained in
Prerequisites is an example.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import requests

if __name__ == '__main__':
 # Config url, token and file path
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Set body,then send request
 headers = {
 'Content-Type': 'application/json',
 'X-Auth-Token': token
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-python.html

parameter of the string type. The input parameter images obtained in
Prerequisites is an example. The value of base64_data in body is of the
string type.

Method 4: Use Java to Send an Inference Request
1. Download the Java SDK and configure it in the development tool. For details,

see Integrating the Java SDK for API request signing.
2. (Optional) If the input of the inference request is in the file format, the Java

project depends on the httpmime module.

a. Add httpmime-x.x.x.jar to the libs folder. Figure 3-15 shows a complete
Java dependency library.
You are advised to use httpmime-x.x.x.jar 4.5 or later. Download
httpmime-x.x.x.jar from https://mvnrepository.com/artifact/
org.apache.httpcomponents/httpmime.

Figure 3-15 Java dependency library

b. After httpmime-x.x.x.jar is added, add httpmime information to
the .classpath file of the Java project as follows:
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
<classpathentry kind="src" path="src"/>
<classpathentry kind="lib" path="libs/commons-codec-1.11.jar"/>
<classpathentry kind="lib" path="libs/commons-logging-1.2.jar"/>
<classpathentry kind="lib" path="libs/httpclient-4.5.13.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.4.13.jar"/>
<classpathentry kind="lib" path="libs/httpmime-x.x.x.jar"/>
<classpathentry kind="lib" path="libs/java-sdk-core-3.1.2.jar"/>
<classpathentry kind="lib" path="libs/okhttp-3.14.9.jar"/>
<classpathentry kind="lib" path="libs/okio-1.17.2.jar"/>
<classpathentry kind="output" path="bin"/>
</classpath>

3. Create a Java request body for inference.
– File input

A sample Java request body is as follows:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.Consts;

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-java.html
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime

import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

import java.io.File;

public class MyTokenFile {

 public static void main(String[] args) {
 // Config url, token and filePath
 String url = "URL of the real-time service";
 String token = "User token";
 String filePath = "Local path to the inference file";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader("X-Auth-Token", token);

 // Add a body if you have specified the PUT or POST method. Special characters, such
as the double quotation mark ("), contained in the body must be escaped.
 File file = new File(filePath);
 HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images",
file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts.UTF_8).build();
 httpPost.setEntity(entity);

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The addBinaryBody name is determined by the input parameter of the
real-time service. The parameter name must be the same as that of the
input parameter of the file type. The file images obtained in
Prerequisites is used as an example.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyTokenTest {

 public static void main(String[] args) {
 // Config url, token and body
 String url = "URL of the real-time service";
 String token = "User token";

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 String body = "{}";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 httpPost.setHeader("X-Auth-Token", token);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 httpPost.setEntity(new StringEntity(body));

 // Send post.
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

3.1.4.2.2 Access Authenticated Using an AK/SK

If a real-time service is in the Running state, the real-time service has been
deployed successfully. This service provides a standard RESTful API for users to call.
Users can call the API using AK/SK-based authentication.

When AK/SK-based authentication is used, you can use the APIG SDK or
ModelArts SDK to access APIs. For details, see Overview of Session
Authentication. This section describes how to use the APIG SDK to access a real-
time service. The process is as follows:

1. Obtaining an AK/SK Pair
2. Obtaining Information About a Real-Time Service
3. Sending an Inference Request

– Method 1: Use Python to Send an Inference Request
– Method 2: Use Java to Send an Inference Request

NO TE

1. AK/SK-based authentication supports API requests with a body not larger than 12 MB.
For API requests with a larger body, token-based authentication is recommended.

2. The local time on the client must be synchronized with the clock server to avoid a large
offset in the value of the X-Sdk-Date request header. API Gateway checks the time
format and compares the time with the time when API Gateway receives the request. If
the time difference exceeds 15 minutes, API Gateway will reject the request.

Obtaining an AK/SK Pair

If an AK/SK pair is already available, skip this step. Find the downloaded AK/SK
file, which is usually named credentials.csv.

As shown in the following figure, the file contains the username, AK, and SK.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2

Figure 3-16 Content of the credential.csv file

Perform the following operations to generate an AK/SK pair:

1. Register with and log in to the management console.
2. Click the username and choose My Credentials from the drop-down list.
3. On the My Credentials page, choose Access Keys in the navigation pane.
4. Click Create Access Key. The Identity Verification dialog box is displayed.
5. Complete the identity authentication as prompted, download the access key,

and keep it secure.

Obtaining Information About a Real-Time Service
When calling an API, you need to obtain the API address and input parameters of
the real-time service. The procedure is as follows:

1. Log in to the ModelArts management console. In the left navigation pane,
choose Service Deployment > Real-Time Services. By default, the system
switches to the Real-Time Services page.

2. Click the name of the target service. The service details page is displayed.
3. On the details page of a real-time service, obtain the API address and input

parameters of the service.
The API URL is the service URL of the real-time service. If a path is defined for
apis in the model configuration file, the URL must be followed by the user-
defined path, for example, {URL of the real-time service}/predictions/poetry.

Figure 3-17 Obtaining the API URL and file prediction input parameters of a
real-time service

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Figure 3-18 Obtaining the API URL and text prediction input parameters of a
real-time service

Method 1: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see Integrating the Python SDK for API request signing.

2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 # In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 file_path = "Local path to the inference file"

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {"x-sdk-content-sha256": "UNSIGNED-PAYLOAD"}
 request = signer.HttpRequest(method, url, headers)

 # Create sign, set the AK/SK to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = ak
 sig.Secret = sk
 sig.Sign(request)

 # Send request
 files = {'images': open(file_path, 'rb')}
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

file_path is the local path to the inference file. The path can be an
absolute path (for example, D:/test.png for Windows and /opt/data/
test.png for Linux) or a relative path (for example, ./test.png).

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-python.html

Request body format of files: files = {"Request parameter": ("Load path",
File content, "File type")}. For details about parameters of files, see Table
3-9.

Table 3-9 Parameters of files

Paramete
r

Mand
atory

Description

Request
paramete
r

Yes Enter the parameter name of the real-time
service.

Load path No Path in which the file is stored.

File
content

Yes Content of the file to be uploaded.

File type No Type of the file to be uploaded, which can be one
of the following options:
● txt: text/plain
● jpg/jpeg: image/jpeg
● png: image/png

– Text input (JSON)

The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import json
import os
import requests
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 # In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {
 'Content-Type': 'application/json'
 }
 body = {
 'image': base64_data
 }
 request = signer.HttpRequest(method, url, headers, json.dumps(body))

 # Create sign, set the AK/SK to sign and authenticate the request.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

 sig = signer.Signer()
 sig.Key = ak
 sig.Secret = sk
 sig.Sign(request)

 # Send request
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, data=request.body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

Method 2: Use Java to Send an Inference Request
1. Download the Java SDK and configure it in the development tool.
2. Create a Java request body for inference.

In the APIG Java SDK, request.setBody() can only be a string. Therefore, only
text inference requests are supported. If a file is input, convert the file into
text using Base64.
– File input

The following is an example of the request body (JSON) for reading the
local inference file and performing Base64 encoding.
package com.apig.sdk.demo;
import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.commons.codec.binary.Base64;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
public class MyAkSkTest2 {
 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 // In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");
 String filePath = "Local path to the inference file";
 try {
 // Create request
 Request request = new Request();
 // Set the AK/SK to sign and authenticate the request.
 request.setKey(ak);
 request.setSecret(sk);
 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);
 // Add header parameters
 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

 // build your json body
 String body = "{\"image\":\"" + getBase64FromFile(filePath) + "\"}";
 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 request.setBody(body);
 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);
 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);
 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 /**
 * Convert the file into a byte array and Base64 encode it
 * @return
 */
 private static String getBase64FromFile(String filePath) {
 // Convert the file into a byte array
 InputStream in = null;
 byte[] data = null;
 try {
 in = new FileInputStream(filePath);
 data = new byte[in.available()];
 in.read(data);
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 // Base64 encode
 return new String(Base64.encodeBase64(data));
 }
}

CA UTION

If Base64 encoding is used, you need to add the code for decoding the
request body to the model inference code.

– Text input (JSON)
// Package name of the demo.
package com.apig.sdk.demo;

import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAkSkTest {

 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 // In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

 try {
 // Create request
 Request request = new Request();

 // Set the AK/SK to sign and authenticate the request.
 request.setKey(ak);
 request.setSecret(sk);

 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);

 // Add header parameters
 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");

 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 String body = "{}";
 request.setBody(body);

 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);

 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

3.1.4.2.3 Access Authenticated Using an Application
You can enable application authentication when deploying a real-time service.
ModelArts registers an API that supports application authentication for the service.
After this API is authorized to an application, you can call this API using the
AppKey/AppSecret or AppCode of the application.

The process of application authentication for a real-time service is as follows:

1. Enabling Application Authentication: Enable application authentication. You
can select an existing application or create an application.

2. Managing Authorization of Real-Time Services: Manage the created
application, including viewing, resetting, or deleting the application, binding
or unbinding real-time services for the application, and obtaining the AppKey/
AppSecret or AppCode.

3. Application Authentication: Authentication is required for calling an API that
supports application authentication. Two authentication modes (AppKey
+AppSecret or AppCode) are provided. You can select either of them.

4. Sending an Inference Request
– Method 1: Use Python to Send an Inference request Through AppKey/

AppSecret-based Authentication
– Method 2: Use Java to Send an Inference request Through AppKey/

AppSecret-based Authentication

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

– Method 3: Use Python to Send an Inference request Through
AppCode-based Authentication

– Method 4: Use Java to Send an Inference request Through AppCode-
based Authentication

Prerequisites
● Data has been prepared. Specifically, you have created an AI application in the

Normal state in ModelArts.
● The account is not in arrears to ensure available resources for service running.
● The local path to the inference file has been obtained. The path can be an

absolute path (for example, D:/test.png for Windows and /opt/data/test.png
for Linux) or a relative path (for example, ./test.png).

Enabling Application Authentication
When deploying an AI application as a real-time service, you can enable
application authentication. You can also modify a deployed real-time service to
support application authentication.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

2. Enable application authentication.
– When deploying a model as a real-time service, configure the required

parameters and enable application authentication on the Deploy page.
– For a deployed real-time service, go to the Real-Time Services page, and

click Modify in the Operation column of the service. On the service
modification page that is displayed, enable application authentication.

Figure 3-19 Enabling application authentication

3. Select an application for authorization from the drop-down list. If no
application is available, create one as follows:
– Click Create Application on the right, enter the application name and

description, and click OK. By default, the application name starts with
app_. You can change the application name.

– On the Service Deployment > Real-Time Services page, click Authorize.
On the Manage Authorization of Real-Time Services page, click Create
Application. For details, see Managing Authorization of Real-Time
Services.

4. After enabling application authentication, authorize a service that supports
application authentication to the application. Then, you can use the generated
AppKey/AppSecret or AppCode to call the service's API that supports
application authentication.

Managing Authorization of Real-Time Services
If you want to use application authentication, it is a good practice to create an
application on the authorization management page before deploying a real-time

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

service. In the navigation pane, choose Service Deployment > Real-Time
Services. On the Real-Time Services page, click Authorize. The Manage
Authorization of Real-Time Services dialog box is displayed. From there, you can
create and manage applications, including viewing, resetting, and deleting
applications, unbinding real-time services from applications, and obtaining the
AppKey/AppSecret or AppCode.

Figure 3-20 Managing authorization for real-time services

● Creating an application
Click Create Application, enter the application name and description, and
click OK. By default, the application name starts with app_. You can change
the application name.

● Viewing, resetting, or deleting an application
View, reset, or delete an application by clicking the corresponding icon in the
Operation column of the application. After an application is created, the
AppKey and AppSecret are automatically generated for application
authentication.

● Unbinding a service
In front of the target application name, click to view the real-time services
bound to the application. Click Unbind in the Operation column to cancel
the binding. Then, this API cannot be called.

● Obtaining the AppKey/AppSecret or AppCode
Application authentication is required for API calling. The AppKey and
AppSecret are automatically generated during application creation. Click in
the Operation column of the application in the Manage Authorization of
Real-Time Services dialog box to view the complete AppSecret. Click in
front of the application name to expand the drop-down list. Click +Add
AppCode to automatically generate an AppCode. Then, click in the
Operation column to view the complete AppCode.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 3-21 Adding the AppCode

Application Authentication
When a real-time service that supports application authentication is in the
Running state, the service' API can be called. Before calling the API, perform
application authentication.

When application authentication is used and the simplified authentication mode is
enabled, you can use the AppKey/AppSecret for signature and verification, or
AppCode for simplified authentication of API requests. (Simplified authentication
is used by ModelArts by default.) AppKey/AppSecret-based authentication is
recommended because it is more secure than AppCode-based authentication.

● AppKey/AppSecret-based authentication: The AppKey and AppSecret are
used to encrypt a request, identify the sender, and prevent the request from
being modified. When using AppKey/AppSecret-based authentication, use a
dedicated signing SDK to sign requests.
– AppKey: access key ID of the application, which is a unique identifier used

together with a secret access key to sign requests cryptographically.
– AppSecret: application secret access key, used together with the Access

Key ID to encrypt the request, identify the sender, and prevent the
request from being tempered.

AppKeys can be used for simplified authentication. When an API is called, the
apikey parameter (value: AppKey) is added to the HTTP request header to
accelerate authentication.

● AppCode-based authentication: Requests are authenticated using AppCodes.
In AppCode-based authentication, the X-Apig-AppCode parameter (value:
AppCode) is added to the HTTP request header when an API is called. The
request content does not need to be signed. The API gateway only verifies the
AppCode, achieving quick response.

You can obtain the API, AppKey/AppSecret, and AppCode from the Usage Guides
tab page on the service details page (see Figure 3-22) or from the real-time
service authorization management page (see Figure 3-20). Use the API URL in the
red box in the following figure. If a path is defined for apis in the model
configuration file, the URL must be followed by the user-defined path, for
example, {URL of the real-time service}/predictions/poetry.

Figure 3-22 Obtaining the API address

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Method 1: Use Python to Send an Inference request Through AppKey/
AppSecret-based Authentication

1. Download the Python SDK and configure it in the development tool.
2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_key and app_secret are risky. For security, encrypt and
store them in the configuration file or environment variables.
 # In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 app_key = os.environ["HUAWEICLOUD_APP_KEY"]
 app_secret= os.environ["HUAWEICLOUD_APP_SECRET"]
 file_path = "Local path to the inference file"

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {"x-sdk-content-sha256": "UNSIGNED-PAYLOAD"}
 request = signer.HttpRequest(method, url, headers)

 # Create sign, set the AK/SK to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = app_key
 sig.Secret = app_secret
 sig.Sign(request)

 # Send request
 files = {'images': open(file_path, 'rb')}
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

Request body format of files: files = {"Request parameter": ("Load path",
File content, "File type")}. For details about parameters of files, see Table
3-10.

Table 3-10 Parameters of files

Paramete
r

Mand
atory

Description

Request
paramete
r

Yes Parameter name of the real-time service.

Load path No Path in which the file is stored.

File
content

Yes Content of the file to be uploaded.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Paramete
r

Mand
atory

Description

File type No Type of the file to be uploaded, which can be one
of the following options:
● txt: text/plain
● jpg/jpeg: image/jpeg
● png: image/png

– Text input (JSON)

The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import json
import os
import requests
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_key and app_secret are risky. For security, encrypt and
store them in the configuration file or environment variables.
 # In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 app_key = os.environ["HUAWEICLOUD_APP_KEY"]
 app_secret= os.environ["HUAWEICLOUD_APP_SECRET"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {
 'Content-Type': 'application/json'
 }
 body = {
 'image': base64_data
 }
 request = signer.HttpRequest(method, url, headers, json.dumps(body))

 # Create sign, set the AppKey&AppSecret to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = app_key
 sig.Secret = app_secret
 sig.Sign(request)

 # Send request
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, data=request.body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Method 2: Use Java to Send an Inference request Through AppKey/
AppSecret-based Authentication

1. Download the Java SDK and configure it in the development tool.
2. Create a Java request body for inference.

In the APIG Java SDK, request.setBody() can only be a string. Therefore, only
text inference requests are supported.
The following is an example of the request body (JSON) for reading the local
inference file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAkSkTest {

 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext app_key and app_secret are risky. For security, encrypt and store
them in the configuration file or environment variables.
 // In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 String appKey = System.getenv("HUAWEICLOUD_APP_KEY");
 String appSecret = System.getenv("HUAWEICLOUD_APP_SECRET");
 String body = "{}";

 try {
 // Create request
 Request request = new Request();

 // Set the AK/AppSecret to sign and authenticate the request.
 request.setKey(appKey);
 request.setSecret(appSecret);

 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);

 // Add header parameters
 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");

 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);

 // Special characters, such as the double quotation mark ("), contained in the body must be
escaped.
 request.setBody(body);

 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);

 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

 }
 }
}

body is determined by the text format. JSON is used as an example.

Method 3: Use Python to Send an Inference request Through AppCode-based
Authentication

1. Download the Python SDK and configure it in the development tool.
2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os

if __name__ == '__main__':
 # Config url, app code and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_code is risky. For security, encrypt and store it in the
configuration file or environment variables.
 # In this example, the app_code is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 app_code = os.environ["HUAWEICLOUD_APP_CODE"]
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Apig-AppCode': app_code
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type. In this example, images is used.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import requests
import os

if __name__ == '__main__':
 # Config url, app code and request body.
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_code is risky. For security, encrypt and store it in the
configuration file or environment variables.
 # In this example, the app_code is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 app_code = os.environ["HUAWEICLOUD_APP_CODE"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

 # Send request
 headers = {
 'Content-Type': 'application/json',
 'X-Apig-AppCode': app_code
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

Method 4: Use Java to Send an Inference request Through AppCode-based
Authentication

1. Download the Java SDK and configure it in the development tool.
2. (Optional) If the input of the inference request is in the file format, the Java

project depends on the httpmime module.

a. Add httpmime-x.x.x.jar to the libs folder. Figure 3-23 shows a complete
Java dependency library.
You are advised to use httpmime-x.x.x.jar 4.5 or later. Download
httpmime-x.x.x.jar from https://mvnrepository.com/artifact/
org.apache.httpcomponents/httpmime.

Figure 3-23 Java dependency library

b. After httpmime-x.x.x.jar is added, add httpmime information to
the .classpath file of the Java project as follows:
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
<classpathentry kind="src" path="src"/>
<classpathentry kind="lib" path="libs/commons-codec-1.11.jar"/>
<classpathentry kind="lib" path="libs/commons-logging-1.2.jar"/>
<classpathentry kind="lib" path="libs/httpclient-4.5.13.jar"/>

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime

<classpathentry kind="lib" path="libs/httpcore-4.4.13.jar"/>
<classpathentry kind="lib" path="libs/httpmime-x.x.x.jar"/>
<classpathentry kind="lib" path="libs/java-sdk-core-3.1.2.jar"/>
<classpathentry kind="lib" path="libs/okhttp-3.14.9.jar"/>
<classpathentry kind="lib" path="libs/okio-1.17.2.jar"/>
<classpathentry kind="output" path="bin"/>
</classpath>

3. Create a Java request body for inference.

– File input

A sample Java request body is as follows:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.Consts;
import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

import java.io.File;

public class MyAppCodeFile {

 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext appCode is risky. For security, encrypt and store it in the
configuration file or environment variables.
 // In this example, the appCode is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 String appCode = System.getenv("HUAWEICLOUD_APP_CODE");
 String filePath = "Local path to the inference file";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader("X-Apig-AppCode", appCode);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 File file = new File(filePath);
 HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images",
file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts.UTF_8).build();
 httpPost.setEntity(entity);

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The addBinaryBody name is determined by the input parameter of the
real-time service. The parameter name must be the same as that of the
input parameter of the file type. In this example, images is used.

– Text input (JSON)

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAppCodeTest {

 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext appCode is risky. For security, encrypt and store it in the
configuration file or environment variables.
 // In this example, the appCode is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 String appCode = System.getenv("HUAWEICLOUD_APP_CODE");
 String body = "{}";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 httpPost.setHeader("X-Apig-AppCode", appCode);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 httpPost.setEntity(new StringEntity(body));

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

3.1.4.3 Access Mode

3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)

Context
By default, ModelArts inference uses the public network to access real-time
services. After a real-time service is deployed, a standard RESTful API is provided
for you to call. You can view the API URL on the Usage Guides tab page of the
service details page.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Figure 3-24 API URL

Accessing a Real-Time Service
The following authentication modes are available for accessing real-time services
from a public network:

● Access Authenticated Using a Token
● Access Authenticated Using an AK/SK
● Access Authenticated Using an Application

3.1.4.3.2 Accessing a Real-Time Service (VPC High-Speed Channel)

Context
When accessing a real-time service, you may require:

● High throughput and low latency
● TCP or RPC requests

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

NO TE

The following functions that are available through the inference platform will be
unavailable if you use high-speed access:
● Authentication
● Traffic distribution by configuration
● Load balancing
● Alarm, monitoring, and statistics

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 3-25 High-speed access through VPC peering

Preparations
Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

NO TICE

● For details about how to deploy services in new-version dedicated resource
pools, see Comprehensive Upgrades to ModelArts Resource Pool Management
Functions.

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, there is a limit on how often you can get the IP address

and port number of a real-time service. The number of calls of each tenant
account cannot exceed 2000 per minute, and that of each IAM user account
cannot exceed 20 per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the real-time service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts management console, choose Dedicated Resource Pools
> Elastic Cluster, locate the dedicated resource pool used for service deployment,

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

and click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 3-26 Locating the target dedicated resource pool

Figure 3-27 Obtaining the network configuration

Figure 3-28 Interconnecting the VPC

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in Step 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

Figure 3-29 Selecting a VPC when purchasing an ECS

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Figure 3-30 Viewing VPC information

Step 3 Obtain the IP address and port number of the real-time service.

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

● Method 1: Obtain the IP address and port number using GUI software.

Figure 3-31 Example response

● Method 2: Obtain the IP address and port number using Python.

The following parameters in the Python code below need to be modified:

– project_id: your project ID. To obtain it, see Obtaining a Project ID and
Name.

– service_id: service ID, which can be viewed on the service details page.

– REGION_ENDPOINT: service endpoint. To obtain it, see Endpoint.
def get_app_info(project_id, service_id):
 list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
 url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
 headers = {'X-Auth-Token': X_Auth_Token}
 response = requests.get(url, headers=headers)
 print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from Step 3.

● Run the following command to access the real-time service:
curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0141.html

Figure 3-32 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
 infer_url = "{}://{}:{}"
 url = infer_url.format(schema, ip, port)
 response = requests.post(url, data=body)
 print(response.content)

NO TE

High-speed access does not support load balancing. You need to customize load balancing
policies when you deploy multiple instances.

----End

3.1.4.4 Accessing a Real-Time Service Through WebSocket

Context
WebSocket is a network transmission protocol that supports full-duplex
communication over a single TCP connection. It is located at the application layer
in the OSI model. The WebSocket communication protocol was established by IETF
as standard RFC 6455 in 2011 and supplemented by RFC 7936. The WebSocket API
in the Web IDL is standardized by W3C.

WebSocket simplifies data exchange between the client and server and allows the
server to proactively push data to the client. In the WebSocket API, if the initial
handshake between the client and server is successful, a persistent connection can
be established between them and bidirectional data transmission can be
performed.

Prerequisites
● A real-time service has been deployed with WebSocket enabled.
● The image for importing the AI application is WebSocket-compliant.

Constraints
● WebSocket supports only the deployment of real-time services.
● WebSocket supports only real-time services deployed using AI applications

imported from custom images.

Calling a WebSocket Real-Time Service
WebSocket itself does not require additional authentication. ModelArts WebSocket
is WebSocket Secure-compliant, regardless of whether WebSocket or WebSocket
Secure is enabled in the custom image. WebSocket Secure supports only one-way
authentication, from the client to the server.

You can use one of the following authentication methods provided by ModelArts:

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

● Access Authenticated Using a Token

● Access Authenticated Using an AK/SK

● Access Authenticated Using an Application

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call WebSocket.

1. Establish a WebSocket connection.

2. Exchange data between the WebSocket client and the server.

Step 1 Establish a WebSocket connection.

1. Open Postman of a version later than 8.5, for example, 10.12.0. Click in
the upper left corner and choose File > New. In the displayed dialog box,
select WebSocket Request (beta version currently).

Figure 3-33 WebSocket Request

2. Configure parameters for the WebSocket connection.

Select Raw in the upper left corner. Do not select Socket.IO (a type of
WebSocket implementation, which requires that both the client and the server
run on Socket.IO). In the address box, enter the API Address obtained on the
Usage Guides tab on the service details page. If there is a finer-grained URL
in the custom image, add the URL to the end of the address. If queryString is
available, add this parameter in the params column. Add authentication
information into the header. The header varies depending on the
authentication mode, which is the same as that in the HTTPS-compliant
inference service. Click Connect in the upper right corner to establish a
WebSocket connection.

Figure 3-34 Obtaining the API address

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

NO TE

– If the information is correct, CONNECTED will be displayed in the lower right
corner.

– If establishing the connection failed and the status code is 401, check the
authentication.

– If a keyword such as WRONG_VERSION_NUMBER is displayed, check whether the
port configured in the custom image is the same as that configured in WebSocket
or WebSocket Secure.

The following shows an established WebSocket connection.

Figure 3-35 Connection established

NO TICE

Preferentially check the WebSocket service provided by the custom image. The
type of implementing WebSocket varies depending on the tool you used.
Possible issues are as follows: A WebSocket connection can be established but
cannot be maintained, or the connection is interrupted after one request and
needs to be reconnected. ModelArts only ensures that it will not affect the
WebSocket status in a custom image (the API address and authentication
mode may be changed on ModelArts).

Step 2 Exchange data between the WebSocket client and the server.

After the connection is established, WebSocket uses TCP for full-duplex
communication. The WebSocket client sends data to the server. The
implementation types vary depending on the client, and the lib package may also
be different for the same language. Different implementation types are not
considered here.

The format of the data sent by the client is not limited by the protocol. Postman
supports text, JSON, XML, HTML, and Binary data. Take text as an example. Enter
the text data in the text box and click Send on the right to send the request to the
server. If the text is oversized, Postman may be suspended.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 3-36 Sending data

----End

3.1.4.5 Server-Sent Events

Context

Server-Sent Events (SSE) is a server push technology enabling a server to push
events to a client via an HTTP connection. This technology is usually used to
enable a server to push real-time data to a client, for example, a chat application
or a real-time news update.

SSE primarily facilitates unidirectional real-time communication from the server to
the client, such as streaming ChatGPT responses. In contrast to WebSockets, which
provide bidirectional real-time communication, SSE is designed to be more
lightweight and simpler to implement.

Prerequisites

The image for importing the AI application is SSE-compliant.

Constraints
● SSE supports only the deployment of real-time services.
● It supports only real-time services deployed using AI applications imported

from custom images.

Calling an SSE Real-Time Service

The SSE protocol itself does not introduce new authentication mechanisms; it
relies on the same methods as HTTP requests.

You can use one of the following authentication methods provided by ModelArts:

● Access Authenticated Using a Token
● Access Authenticated Using an AK/SK
● Access Authenticated Using an Application

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call an SSE service.

Figure 3-37 Calling an SSE service

Figure 3-38 Response header Content-Type

NO TE

In normal cases, the value of Content-Type in the response header is text/event-
stream;charset=UTF-8.

3.1.5 Integrating a Real-Time Service
For a real-time service API that has been commissioned, you can integrate it into
the production environment.

Prerequisites
The real-time service is running. Otherwise, applications in the production
environment will be unavailable.

Integration Mode
ModelArts real-time services provide standard RESTful APIs, which can be accessed
using HTTPS. ModelArts provides SDKs for calling real-time service APIs. For

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

details about how to call the SDKs, see "Scenario 1: Perform an inference test
using the predictor" in SDK Reference.

In addition, you can use common development tools and languages to call the
APIs. You can search for and obtain the guides for calling standard RESTful APIs on
the Internet.

3.1.6 Cloud Shell

Scenarios

You can use Cloud Shell provided by the ModelArts console to log in to a running
real-time service instance container.

Constraints
● Cloud Shell can only access a container when the associated real-time service

is deployed within a dedicated resource pool
● Cloud Shell can only access a container when the associated real-time service

is running.

Using Cloud Shell
1. Log in to the ModelArts console. In the navigation pane, choose Service

Deployment > Real-Time Services.
2. On the real-time service list page, click the name or ID of the target service.

The real-time service details page is displayed.
3. Click the Cloud Shell tab and select the AI application version and compute

node. When the connection status changes to , you have logged in to the
instance container.
If the server disconnects due to an error or remains idle for 10 minutes, you
can select Reconnect to regain access to the container instance.

Figure 3-39 Cloud Shell

NO TE

A path display exception may occur when you log in to the Cloud Shell page. In this
case, press Enter to rectify the fault.

Figure 3-40 Abnormal path

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0204.html

3.2 Deploying AI Applications as Batch Services

3.2.1 Deploying as a Batch Service
After an AI application is prepared, you can deploy it as a batch service. The
Service Deployment > Batch Services page lists all batch services.

Prerequisites
● A ModelArts application in the Normal state is available.

● Data to be batch processed is ready and has been upload to an OBS directory.

● At least one empty folder has been created in OBS for storing the output.

Context
● A maximum of 1,000 batch services can be created.

● Based on the input request (JSON or file) defined by the AI application,
different parameters are entered. If the AI application input is a JSON file, a
configuration file is required to generate a mapping file. If the AI application
input is a file, no mapping file is required.

● Batch services can only be deployed in a public resource pool, but not a
dedicated resource pool.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Batch Services. By default, the Batch Services
page is displayed.

2. In the batch service list, click Deploy in the upper left corner. The Deploy
page is displayed.

3. Set parameters for a batch service.

a. Set the basic information, including Name and Description. The name is
generated by default, for example, service-bc0d. You can specify Name
and Description according to actual requirements.

b. Set other parameters, including the resource pool and AI application
configurations. For details, see Table 3-11.

Table 3-11 Parameters

Parameter Description

AI Application
Source

Select My AI Applications or My Subscriptions
based on your requirements.

AI Application
and Version

Select an AI application and version that are
running properly.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Parameter Description

Input Path Select the OBS directory where the uploaded data is
stored. Select a folder or a .manifest file. For details
about the specifications of the .manifest file, see
Manifest File Specifications.
NOTE

● If the input data is an image, ensure that the size of a
single image is less than 12 MB.

● If the input data is in CSV format, ensure that no
Chinese character is included.

● If the input data is in CSV format, ensure that the file
size does not exceed 12 MB.

● If an image or CSV file is larger than 12 MB, an error is
reported. In this case, resize the file or contact
technical support to adjust the file size limit.

Request Path URL used for calling the AI application API in a
batch service, and also the request path of the AI
application service. Its value is obtained from the
url field of apis in the AI application configuration
file.

Mapping
Relationship

If the AI application input is in JSON format, the
system automatically generates the mapping based
on the configuration file corresponding to the AI
application. If the AI application input is other file,
mapping is not required.
Automatically generated mapping file. Enter the
field index corresponding to each parameter in the
CSV file. The index starts from 0.
Mapping rule: The mapping rule comes from the
input parameter (request) in the model
configuration file config.json. When type is set to
string, number, integer, or boolean, you are
required to set the index parameter. For details
about the mapping rule, see Example Mapping.
The index must be a positive integer starting from
0. If the value of index does not comply with the
rule, this parameter is ignored in the request. After
the mapping rule is configured, the corresponding
CSV data must be separated by commas (,).

Output Path Select the path for saving the batch prediction
result. You can select the empty folder that you
create.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Parameter Description

Specifications The system provides available compute resources
matching your AI application. Select an available
resource from the drop-down list.
For example, if the model comes from an ExeML
project, the compute resources are automatically
associated with the ExeML specifications for use.

Compute Nodes Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If you
set the number of nodes to a value greater than 1,
the distributed computing mode is used. Select a
computing mode based on the actual requirements.

Environment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information, such as plaintext passwords, in
environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Runtime Log
Output

This function is disabled by default. The run logs of
batch services are stored only in the ModelArts log
system. You can query the run logs on the Logs tab
page of the service details page.
If this function is enabled, the run logs of batch
services are exported and stored in Log Tank Service
(LTS). LTS automatically creates log groups and log
streams and caches run logs generated within seven
days by default. For details about the LTS log
management function, see Log Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for the log query and log storage

functions provided by LTS. For details, see section LTS
Pricing Details.

● Do not print unnecessary audio log files. Otherwise,
system logs may fail to be displayed, and the error
message "Failed to load audio" may be displayed.

4. After setting the parameters, deploy the model as a batch service as

prompted. Deploying a service generally requires a period of time, which may
be several minutes or tens of minutes depending on the amount of your data
and resources.

NO TE

After a batch service is deployed, it is started immediately. During the running, you
will be charged based on your selected resources.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

You can go to the batch service list to view the basic information about the
batch service. In the batch service list, after the status of the newly deployed
service changes from Deploying to Running, the service is deployed
successfully.

Manifest File Specifications
ModelArts batch services support manifest files, which describe data input and
output.

Example input manifest file
● File name: test.manifest
● File content:

{"source": "obs://test/data/1.jpg"}
{"source": "s3://test/data/2.jpg"}
{"source": "https://infers-data.obs.cn-north-1.myhuaweicloud.com:443/xgboosterdata/data.csv?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDM..."}

● Requirements on the file:

a. The file name extension must be .manifest.
b. The file content is in JSON format. Each row describes a piece of input

data, which must be accurate to a file instead of a folder.
c. A source field must be defined for the JSON content. The field value is

the OBS URL of the file in any of the following formats:

i. Bucket path <obs path>{{Bucket name}}/{{Object name}}/File name,
which is used to access your OBS data. You can access the path for
obtaining an object in OBS. <obs path> can be obs:// or s3://.

ii. Shared link generated by OBS, including signature information. It
applies to accessing OBS data of other users. The link has a validity
period. Perform operations within the period.

Example output manifest file

A manifest file will be generated in the output directory of the batch services.
● Assume that the output path is //test-bucket/test/. The result is stored in the

following path:
OBS bucket/directory name
├── test-bucket
│ ├── test
│ │ ├── infer-result-{{task_id}}.manifest
│ │ ├── infer-result
│ │ │ ├── 1.jpg_result.txt
│ │ │ ├── 2.jpg_result.txt

● Content of the infer-result-0.manifest file:
{"source": "obs://obs-data-bucket/test/data/1.jpg","result":"SUCCESSFUL","inference-loc": "obs://test-
bucket/test/infer-result/1.jpg_result.txt"}
{"source": "s3://obs-data-bucket/test/data/2.jpg","result":"FAILED","error_message": "Download file
failed."}
{"source ": "https://infers-data.obs.xxx.com:443/xgboosterdata/2.jpg?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDMNZWxzhBZ6Q-3HcoZMh9gISwQOVBwm4ZytB_m8sg1fL6isU7T3CnoL9jmv
DGgT9VBC7dC1EyfSJrUcqfB_N0ykCsfrA1Tt_IQYZFDu_HyqVk-
GunUcTVdDfWlCV3TrYcpmznZjliAnYUO89kAwCYGeRZsCsC0ePu4PHMsBvYV9gWmN9AUZIDn1sfRL4vo
BpwQnp6tnAgHW49y5a6hP2hCAoQ-95SpUriJ434QlymoeKfTHVMKOeZxZea-
JxOvevOCGI5CcGehEJaz48sgH81UiHzl21zocNB_hpPfus2jY6KPglEJxMv6Kwmro-

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

ZBXWuSJUDOnSYXI-3ciYjg9-
h10b8W3sW1mOTFCWNGoWsd74it7l_5-7UUhoIeyPByO_REwkur2FOJsuMpGlRaPyglZxXm_jfdLFXobYtz
Zhbul4yWXga6oxTOkfcwykTOYH0NPoPRt5MYGYweOXXxFs3d5w2rd0y7p0QYhyTzIkk5CIz7FlWNapFISL
7zdhsl8RfchTqESq94KgkeqatSF_iIvnYMW2r8P8x2k_eb6NJ7U_q5ztMbO9oWEcfr0D2f7n7Bl_nb2HIB_H9tj
zKvqwngaimYhBbMRPfibvttW86GiwVP8vrC27FOn39Be9z2hSfJ_8pHej0yMlyNqZ481FQ5vWT_vFV3JHM-
7I1ZB0_hIdaHfItm-J69cTfHSEOzt7DGaMIES1o7U3w%3D%3D","result":"SUCCESSFUL","inference-loc":
"obs://test-bucket/test/infer-result/2.jpg_result.txt"}

● File format:

a. The file name is infer-result-{{task_id}}.manifest, where task_id is the
batch task ID, which is unique for a batch service.

b. If a large number of files need to be processed, multiple manifest files
may be generated with the same suffix .manifest and are distinguished
by suffix, for example, infer-result-{{task_id}}_1.manifest.

c. The infer-result-{{task_id}} directory is created in the manifest directory
to store the file processing result.

d. The file content is in JSON format. Each row describes the output result
of a piece of input data.

e. The file contains multiple fields:

i. source: input data description, which is the same as that of the input
manifest file

ii. result: file processing result, which can be SUCCESSFUL or FAILED
iii. inference-loc: output result path. This field is available when result is

SUCCESSFUL. The format is obs://{{Bucket name}}/{Object name}.
iv. error_message: error information. This field is available when the

result is FAILED.

Example Mapping
The following example shows the relationship between the configuration file,
mapping rule, CSV data, and inference request.

The following uses a file for prediction as an example:

[
 {
 "method": "post",
 "url": "/",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number"
 },
 "input_2": {
 "type": "number"
 },
 "input_3": {

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

 "type": "number"
 },
 "input_4": {
 "type": "number"
 }
 }
 }
]
 }
 }
 }
 }
 }
 }
 }
]

The ModelArts management console automatically resolves the mapping
relationship from the configuration file as shown below. When calling a ModelArts
API, configure the mapping by following the rule.
{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number",
 "index": 0
 },
 "input_2": {
 "type": "number",
 "index": 1
 },
 "input_3": {
 "type": "number",
 "index": 2
 },
 "input_4": {
 "type": "number",
 "index": 3
 }
 }
 }
]
 }
 }
 }
 }
}

Multiple pieces of CSV data for inference are separated by commas (,) The
following shows an example:
5.1,3.5,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,1.3,0.2

Depending on the defined mapping relationship, the inference request is shown
below, whose format is similar to that for real-time services.
{
 "data": {

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

 "req_data": [{
 "input_1": 5.1,
 "input_2": 3.5,
 "input_3": 1.4,
 "input_4": 0.2
 }]
 }
}

3.2.2 Viewing Details About a Batch Service
After an AI application is deployed as a batch service, you can access the Batch
Services page to view its details.

1. Log in to the ModelArts console and choose Service Deployment > Batch
Services.

2. Click the name of the target service. The service details page is displayed.
View service information. For details, see Table 3-12.

Table 3-12 Batch service parameters

Parameter Description

Name Name of the batch service.

Service ID ID of the batch service.

Status Status of the batch service.

Job ID Job ID of the batch service.

Instance
Flavor

Node flavor of the batch service.

Compute
Nodes

Number of nodes of the batch service.

Start Time Start time of the batch service job.

Environment
Variable

Environment variables added during batch service creation.

End Time End time of the batch service job.

Description Service description, which you can click the edit button to
modify.

Input Path OBS path to the input data in the batch service.

Output Path OBS path to the output data in the batch service.

AI
Application
Name &
Version

Name and version of the AI application used by the batch
service.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Parameter Description

Advanced
Log
Management

This function is disabled by default. The runtime logs of
batch services are stored only in the ModelArts log system.
If this function is enabled, the runtime logs of batch services
will be exported and stored in Log Tank Service (LTS). LTS
automatically creates log groups and log streams and
caches run logs generated within seven days by default. For
details about the LTS log management function, see Log
Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for the log query and log storage functions

provided by LTS. For details, see section LTS Pricing Details.
● Do not print unnecessary audio log files. Otherwise, system logs

may fail to be displayed, and the error message "Failed to load
audio" may be displayed.

3. Switch between tabs on the details page of a batch service to view more

details. For details, see Table 3-13.

Table 3-13 Batch service tabs

Parameter Description

Events This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Service Events.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Parameter Description

Logs This page displays the log information about each AI
application in the service. You can view logs generated
in the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining a time segment.
If this function is enabled, the logs stored in LTS will be
displayed. You can click View Complete Logs on LTS to
view all logs.
Log search rules:
● Do not enter a string that contains any of the

following delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● You can use exact search by keyword. A keyword

refers to the word between two adjacent delimiters.
● You can use fuzzy search by keyword. For example,

you can enter error, er?or, rro*, or er*r.
● You can enter a phrase for exact search. For

example, Start to refresh.
● Before enabling this function, you can combine

keywords with && or ||. For example, query
logs&&erro* or query logs||erro*. After enabling
this function, you can combine keywords with AND
or OR. For example, query logs AND erro* or query
logs OR erro*.

3.2.3 Viewing the Batch Service Prediction Result
When deploying a batch service, you can select the location of the output data
directory. You can view the running result of the batch service that is in the
Completed status.

Procedure
1. Log in to the ModelArts management console and choose Service

Deployment > Batch Services.
2. Click the name of the target service in the Completed status. The service

details page is displayed.
– You can view the service name, status, ID, input path, output path, and

description.

– You can click in the Description area to edit the description.
3. Obtain the detailed OBS path next to Output Path, switch to the path and

obtain the batch service prediction results, including the prediction result file
and the AI application prediction result.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

If the prediction is successful, the directory contains the prediction result file
and AI application prediction result. Otherwise, the directory contains only the
prediction result file.

– Prediction result file: The file is in xxx.manifest format, which contains
the file path and prediction result, and more.

– AI application prediction result:

▪ If images are input, a result file is generated for each image in the
Image name__result.txt format, for example,
IMG_20180919_115016.jpg_result.txt.

▪ If audio files are input, a result file is generated for each audio file in
the Audio file name__result.txt format, for example, 1-36929-
A-47.wav_result.txt.

▪ If table data is input, the result file is generated in the Table
name__result.txt format, for example, train.csv_result.txt.

3.3 Upgrading a Service
For a deployed service, you can modify its basic information to match service
changes and change the AI application version to upgrade it.

You can modify the basic information about a service in either of the following
ways:

Method 1: Modify Service Information on the Service Management Page

Method 2: Modify Service Information on the Service Details Page

Prerequisites

The service has been deployed. The service in the Deploying state cannot be
upgraded by modifying the service information.

Constraints
● Improper upgrade operations will interrupt service running during the

upgrade. Therefore, exercise caution when performing this operation.

● ModelArts supports hitless rolling upgrade of real-time services in some
scenarios. Before upgrade, prepare for it and confirm the prerequisites.

Table 3-14 Scenarios for hitless rolling upgrade

Meta Model Source
for Creating an AI
Application

Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Training job Not supported Not supported

Template Not supported Not supported

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Meta Model Source
for Creating an AI
Application

Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Container image Not supported Supported. The custom
image for creating an AI
application must meet
Custom Image
Specifications for
Creating AI
Applications.

OBS Not supported Not supported

Method 1: Modify Service Information on the Service Management Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. In the service list, click Modify in the Operation column of the target service,
modify basic service information, and submit the modification task as
prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
– For details about the real-time service parameters, see Deploying as a

Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

Method 2: Modify Service Information on the Service Details Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. Click the name of the target service. The service details page is displayed.
3. Click Modify in the upper right corner of the page, modify the service details,

and submit the modification task as prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
– For details about the real-time service parameters, see Deploying as a

Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html

3.4 Starting, Stopping, Deleting, or Restarting a Service

Starting a Service

You can start services in the Successful, Abnormal, or Stopped status. Services in
the Deploying state cannot be started. A service is billed when it is started and in
the Running state. You can start a service in the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Start in the Operation column to start the
target service.

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Start in the upper right corner of the page to
start the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot be
started.

Stopping a Service

A stopped service will no longer be billed. Stop a service in either of the following
ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Stop in the Operation column to stop a
service. (For a real-time service, choose More > Stop in the Operation
column.)

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Stop in the upper right corner of the page to
stop the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot
be stopped.

Deleting a Service

If a service is no longer in use, delete it to release resources.

Log in to the ModelArts management console and choose Service Deployment
from the left navigation pane. Go to the service management page of the target
service.
● Real-time services

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

– In the real-time service list, choose More > Delete in the Operation
column of the target service to delete it.

– Select services in the real-time service list and click Delete above the list
to delete services in batches.

– Click the name of the target service. On the displayed service details
page, click Delete in the upper right corner to delete the service.

● Batch services
– In the batch service list, click Delete in the Operation column of the

target service to delete it.
– Select services in the batch service list and click Delete above the list to

delete services in batches.
– Click the name of the target service. On the displayed service details

page, click Delete in the upper right corner to delete the service.

NO TE

● A deleted service cannot be recovered.

● A service cannot be deleted without agency authorization.

● If Advanced Log Management is enabled for a real-time service, you are advised to
delete the LTS logs and streams when you delete the service. This prevents additional
fees incurred by the logs and streams.

Restarting a Service

You can restart a real-time service only when the service is in the Running or
Alarm state. Batch services and edge services cannot be restarted. You can restart
a real-time service in either of the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click More > Restart in the Operation column to restart the target service.

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click the name of the target service. The service details page is displayed.
Click Restart in the upper right corner of the page to restart the service.

3.5 Viewing Service Events
During the whole lifecycle of a service, every key event is automatically recorded.
You can view the events on the details page of the service at any time.

This helps you better understand the process of deploying a service and locate
faults more accurately when a task exception occurs. The following table lists the
available events.

Table 3-15 Events

Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The service starts to deploy. -

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Insufficient resources. Wait until idle
resources are sufficient.

Wait until the
resources are
released and try
again.

Abnormal Insufficient xxx. The scheduling failed.
Supplementary information: xxx

Learn about
resource
insufficiency
details based on
the
supplementary
information. For
details, see
FAQs.

Normal The image starts to create. -

Abnormal Failed to create model image xxx. For
details, see logs :\nxxx.

Locate and
rectify the fault
based on the
build logs.

Abnormal Failed to create the image. Contact
technical
support.

Normal The image created. -

Abnormal Service xxx failed. Error: xxx Locate and
rectify the fault
based on the
error
information.

Abnormal Failed to update the service. Perform a
rollback.

Contact
technical
support.

Normal The service is being updated. -

Normal The service is being started. -

Normal The service is being stopped. -

Normal The service has been stopped. -

Normal Auto stop has been disabled. -

Normal Auto stop has been enabled. The service
will stop after xs.

-

Normal The service stops when the auto stop time
expires.

-

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_05_3155.html

Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal The service is stopped because the quota
exceeds the upper limit.

Contact
technical
support.

Abnormal Failed to automatically stop the service.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal Service instances deleted from resource
pool xxx.

-

Normal Service instances stopped in resource pool
xxx.

-

Abnormal The batch service failed. Try again later.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal The service has been executed. -

Abnormal Failed to stop the service. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal The subscription license xxx is to expire. -

Normal Service xxx started. -

Abnormal Failed to start service xxx. For details
about how to
locate and
rectify the fault,
see FAQs.

Abnormal Service deployment timed out. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal Failed to update the service. The update
has been rolled back.

-

Abnormal Failed to update the service. The rollback
failed.

Contact
technical
support.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0195.html

During service deployment and running, key events can both be manually and
automatically refreshed.

Viewing Events
1. In the left navigation pane of the ModelArts management console, choose

Service Deployment > Real-Time Services or Batch Services or Edge
Services. In the service list, click the name or ID of the target service to go to
its details page.

2. View the events on the Events tab page.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

4 Inference Specifications

Model Package Specifications

Model Templates

Examples of Custom Scripts

4.1 Model Package Specifications

4.1.1 Introduction to Model Package Specifications
When creating an AI application, make sure that any meta model imported from
OBS complies with specifications.

NO TE

● The model package specifications are used when you import one model. If you import
multiple models, for example, there are multiple model files, use custom images.

● If you want to use an AI engine that is not supported by ModelArts, use a custom
image.

● For details about how to create a custom image, see Custom Image Specifications for
Creating AI Applications and Creating a Custom Image and Using It to Create an AI
Application.

● For more examples of custom scripts, see Examples of Custom Scripts.

The model package must contain the model directory. The model directory stores
the model file, model configuration file, and model inference code file.

● Model files: The requirements for model files vary according to the model
package structure. For details, see Model Package Example.

● Model configuration file: The model configuration file must be available and
its name is consistently to be config.json. There must be only one model
configuration file. For details about how to edit a model configuration file, see
Specifications for Editing a Model Configuration File .

● Model inference code file: It is mandatory. The file name is consistently to be
customize_service.py. There must be only one model inference code file. For
details about how to edit model inference code, see Specifications for
Writing Model Inference Code .

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0270.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0270.html

– The .py file on which customize_service.py depends can be directly
stored in the model directory. Use a relative import mode to import the
custom package.

– The other files on which customize_service.py depends can be stored in
the model directory. You must use absolute paths to access these files.
For more details, see Obtaining an Absolute Path.

ModelArts provides samples and sample code for multiple engines. You can
compile your configuration files and inference code by referring to ModelArts
Samples. ModelArts also provides custom script examples of common AI engines.
For details, see Examples of Custom Scripts.

If you encounter any problem when importing a meta model, contact Huawei
Cloud technical support.

Model Package Example
● Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the ocr directory.
OBS bucket/directory name
|── ocr
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description
of the model
| │ ├── variables Name of a fixed sub-directory, which contains the weight and deviation rate of
the model. It is mandatory for the main file of the *.pb model.
| │ │ ├── variables.index Mandatory
| │ │ ├── variables.data-00000-of-00001 Mandatory
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists.
The files on which customize_service.py depends can be directly stored in the model directory.

● Structure of the PyTorch-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight
information and is saved as state_dict
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of a custom model package depends on the AI engine in your
custom image. For example, if the AI engine in your custom image is
TensorFlow, the model package uses the TensorFlow structure.

4.1.2 Specifications for Editing a Model Configuration File
A model developer needs to edit a configuration file config.json when publishing
a model. The model configuration file describes the model usage, computing
framework, precision, inference code dependency package, and model API.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0014.html
https://www.huaweicloud.com/intl/en-us/service/help-tools.html
https://www.huaweicloud.com/intl/en-us/service/help-tools.html

Configuration File Format
The configuration file is in JSON format. Table 4-1 describes the parameters.

Table 4-1 Parameters

Paramete
r

Mand
atory

Data
Type

Description

model_alg
orithm

Yes String Model algorithm, which is set by the model
developer to help model users understand the
usage of the model. The value must start with a
letter and contain no more than 36 characters.
Chinese characters and special characters
(&!'\"<>=) are not allowed. Common model
algorithms include image_classification (image
classification), object_detection (object
detection), and predict_analysis (prediction
analysis).

model_typ
e

Yes String Model AI engine, which indicates the computing
framework used by a model. Common AI engines
and Image are supported.
● For details about supported AI engines, see

Supported AI Engines for ModelArts
Inference.

● If model_type is set to Image, the AI
application is created using a custom image.
In this case, parameter swr_location is
mandatory. For details about specifications for
custom images, see Custom Image
Specifications for Creating AI Applications.

runtime No String Model runtime environment. Python2.7 is used
by default The value of runtime depends on the
value of model_type. If model_type is set to
Image, you do not need to set runtime. If
model_type is set to another mainstream
framework, select the engine and runtime
environment. For details about the supported
running environments, see Supported AI Engines
for ModelArts Inference.
If your model must run on specified CPUs or
GPUs, select the CPUs or GPUs based on the
runtime suffix. If the runtime does not contain
the CPU or GPU information, check the runtime
description in Supported AI Engines for
ModelArts Inference.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html

Paramete
r

Mand
atory

Data
Type

Description

metrics No Objec
t

Model precision information, including the
average value, recall rate, precision, and accuracy.
For details about the metrics object structure,
see Table 4-2.
The result is displayed in the model precision
area on the AI application details page.

apis No api
array

Format of the requests received and returned by
a model. The value is structure data.
It is the RESTful API array provided by a model.
For details about the API data structure, see
Table 4-3. For details about the code example,
see Code Example of apis Parameters.
● If model_type is set to Image, the AI

application is created using a custom image.
● When model_type is not Image, only one API

whose request path is / can be declared in
apis because the preconfigured AI engine
exposes only one inference API whose request
path is /.

dependen
cies

No depen
dency
array

Package on which the model inference code
depends, which is structure data.
Model developers need to provide the package
name, installation mode, and version constraints.
Only the pip installation mode is supported.
Table 4-6 describes the dependency array.
If the model package does not contain the
customize_service.py file, you do not need to set
this parameter. Dependency packages cannot be
installed for custom image models.
NOTE

The dependencies parameter supports multiple
dependency structure arrays in list format and applies
to scenarios where the default installation packages
have dependency relationships. Packages on the top
are installed first. The wheel package on premises can
be used for installation. (The wheel package must be
stored in the same directory as the model file). For
details, see How Do I Edit the Installation Package
Dependency Parameters in a Model Configuration
File When Importing a Model?

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html

Paramete
r

Mand
atory

Data
Type

Description

health No healt
h
data
struct
ure

Configuration of an image health interface. This
parameter is mandatory only when model_type
is set to Image.
If services cannot be interrupted during a rolling
upgrade, a health check API must be provided for
ModelArts to call. For details about the health
data structure, see Table 4-8.

Table 4-2 metrics object description

Paramete
r

Mand
atory

Data
Type

Description

f1 No Numb
er

F1 score. The value is rounded to 17 decimal
places.

recall No Numb
er

Recall rate. The value is rounded to 17 decimal
places.

precision No Numb
er

Precision. The value is rounded to 17 decimal
places.

accuracy No Numb
er

Accuracy. The value is rounded to 17 decimal
places.

Table 4-3 api array

Paramet
er

Manda
tory

Data
Type

Description

url No String Request path. The default value is a slash (/). For
a custom image model (model_type is Image),
set this parameter to the actual request path
exposed in the image. For a non-custom image
model (model_type is not Image), the URL can
only be /.

method No String Request method. The default value is POST.

request No Object Request body. For details, see Table 4-4.

response No Object Response body. For details, see Table 4-5.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Table 4-4 request description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
The options are as follows:
● application/json: JSON data is uploaded.
● multipart/form-data: A file is uploaded.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The request body is described in JSON schema.
For details about the parameter description,
see the official guide.

Table 4-5 response description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The response body is described in JSON
schema. For details about the parameter
description, see the official guide.

Table 4-6 dependency array

Parameter Mandatory Data Type Description

installer Yes String Installation method. Only pip is
supported.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://json-schema.org/understanding-json-schema/reference/array.html
https://json-schema.org/understanding-json-schema/reference/array.html

Parameter Mandatory Data Type Description

packages Yes package array Dependency package collection.
For details about the package
structure array, see Table 4-7.

Table 4-7 package array

Parameter Mandatory Type Description

package_na
me

Yes String Dependency package name.
Chinese characters and special
characters (&!'"<>=) are not
allowed.

package_ver
sion

No String Dependency package version. If
the dependency package does
not rely on package versions,
leave this field blank. Chinese
characters and special characters
(&!'"<>=) are not allowed.

restraint No String Version restriction. This
parameter is mandatory only
when package_version is
configured. Possible values are
EXACT, ATLEAST, and ATMOST.
● EXACT indicates that a

specified version is installed.
● ATLEAST indicates that the

version of the installation
package is not earlier than
the specified version.

● ATMOST indicates that the
version of the installation
package is not later than the
specified version.
NOTE

● If there are specific
requirements on the version,
preferentially use EXACT. If
EXACT conflicts with the
system installation packages,
you can select ATLEAST.

● If there is no specific
requirement on the version,
retain only the
package_name parameter
and leave restraint and
package_version blank.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Table 4-8 health data structure description

Parameter Mandatory Type Description

check_meth
od

Yes String Health check method. The value
can be HTTP or EXEC.
● HTTP: Use an HTTP request.
● EXEC: Execute a command.

command No String Health check command. This
parameter is mandatory when
check_method is set to EXEC.

url No String Request URL of a health check
API. This parameter is
mandatory when check_method
is set to HTTP.

protocol No String Request protocol of a health
check API. The default value is
http. This parameter is
mandatory when check_method
is set to HTTP.

initial_delay
_seconds

No String Delay for initializing the health
check.

timeout_sec
onds

No String Health check timeout.

period_seco
nds

Yes String Health check period, in seconds.
Enter an integer greater than 0
and no more than 2147483647.

failure_thres
hold

Yes String Maximum number of health
check failures. Enter an integer
greater than 0 and no more than
2147483647.

Code Example of apis Parameters
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }
}]

Example of the Object Detection Model Configuration File

The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "detection_classes": [
 "face",
 "arm"
],
 "detection_boxes": [
 [
 33.6,
 42.6,
 104.5,
 203.4
],
 [
 103.1,
 92.8,
 765.6,
 945.7
]
],
 "detection_scores": [0.99, 0.73]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "object_detection",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "detection_classes": {
 "type": "array",
 "items": [{
 "type": "string"
 }]
 },
 "detection_boxes": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 4,
 "maxItems": 4,
 "items": [{
 "type": "number"
 }]
 }]
 },
 "detection_scores": {
 "type": "array",
 "items": [{
 "type": "number"
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }]
}

Example of the Image Classification Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "predicted_label": "flower",
 "scores": [
 ["rose", 0.99],
 ["begonia", 0.01]

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "image_classification",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 {
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "ATLEAST",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "",
 "package_version": "",
 "package_name": "Pillow"
 }
]
 }]
}

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

The following code uses the MindSpore engine as an example. You can modify the
model_type parameter based on the type of the engine you use.

● Model input
Key: images
Value: image files

● Model output
"[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157
11.290332 -1.5861531 5.7887416]]"

● Configuration file
{
 "model_algorithm": "image_classification",
 "model_type": "MindSpore",
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.0023493892851938493,
 "accuracy": 0.00746268656716417
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [{
 "type": "string"
 }]
 }
 }
 }
 }
 }
],
 "dependencies": []
 }

Example of the Predictive Analytics Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
{
 "data": {
 "req_data": [
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 },
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 }
]
 }
}

● Model output
{
 "data": {
 "resp_data": [
 {
 "predict_result": "unacc"
 },
 {
 "predict_result": "unacc"
 }
]
 }
}

● Configuration file

NO TE

In the code, the data parameter in the request and response structures is described in
JSON Schema. The content in data and properties corresponds to the model input
and output.

{
 "model_type": "TensorFlow",
 "model_algorithm": "predict_analysis",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {}
 }
]
 }
 }
 }
 }
 }
 }
 }
],
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }
]
}

Example of the Custom Image Model Configuration File
The model input and output are similar to those in Example of the Object
Detection Model Configuration File.

● If the input is an image, the request example is as follows.
In the example, a model prediction request containing the parameter images
with the parameter type of file is received. For this example, the file upload
button is displayed on the inference page, and the inference is performed in
file format.
{
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

 }
}

● If the input is JSON data, the request example is as follows.
In this example, the model prediction JSON request body is received. In the
request, there is only one prediction request containing the parameter input
with the parameter type of string. On the inference page, a text box is
displayed for you to enter the prediction request.
{
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "input": {
 "type": "string"
 }
 }
 }
}

A complete request example is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "Image",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "required": [
 "predicted_label",
 "scores"
],
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [{
 "type": "string"
 },
 {
 "type": "number"

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

 }
]
 }]
 }
 }
 }
 }
 }]
}

Example of the Machine Learning Model Configuration File
The following uses XGBoost as an example:

● Model input
{
 "req_data": [
 {
 "sepal_length": 5,
 "sepal_width": 3.3,
 "petal_length": 1.4,
 "petal_width": 0.2
 },
 {
 "sepal_length": 5,
 "sepal_width": 2,
 "petal_length": 3.5,
 "petal_width": 1
 },
 {
 "sepal_length": 6,
 "sepal_width": 2.2,
 "petal_length": 5,
 "petal_width": 1.5
 }
]
}

● Model output
{
 "resp_data": [
 {
 "predict_result": "Iris-setosa"
 },
 {
 "predict_result": "Iris-versicolor"
 }
]
}

● Configuration file
{
 "model_type": "XGBoost",
 "model_algorithm": "xgboost_iris_test",
 "runtime": "python2.7",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "predict_result": {}
 }
 }
]
 }
 }
 }
 }
 }
]
}

Example of a Model Configuration File Using a Custom Dependency Package
The following example defines the NumPy 1.16.4 dependency environment.

{
 "model_algorithm": "image_classification",
 "model_type": "TensorFlow",
 "runtime": "python3.6",
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

 {
 "type": "string"
 }
]
 }
 }
 }
 }
 }
],
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.00234938928519385,
 "accuracy": 0.00746268656716417
 },
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.16.4",
 "package_name": "numpy"
 }
]
 }
]
}

4.1.3 Specifications for Writing Model Inference Code
This section describes the general method of editing model inference code in
ModelArts. For details about the custom script examples (including inference code
examples) of mainstream AI engines, see Examples of Custom Scripts. This
section also provides an inference code example for the TensorFlow engine and an
example of customizing the inference logic in the inference script.

Due to the limitation of API Gateway, the duration of a single prediction in
ModelArts cannot exceed 40s. The model inference code must be logically clear
and concise for satisfactory inference performance.

Specifications for Compiling Inference Code
1. In the model inference code file customize_service.py, add a child model

class. This child model class inherits properties from its parent model class.
For details about the import statements of different types of parent model
classes, see Table 4-9. The Python packages related to import statements
have been configured in the ModelArts environment. You do not need to
install them.

Table 4-9 Import statements of different types of parent model classes

Model Type Parent Class Import Statement

TensorFlow TfServingBaseService from model_service.tfserving_model_service
import TfServingBaseService

PyTorch PTServingBaseService from model_service.pytorch_model_service
import PTServingBaseService

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Model Type Parent Class Import Statement

MindSpore SingleNodeService from model_service.model_service import
SingleNodeService

2. The following methods can be rewritten:

Table 4-10 Methods to be rewritten

Method Description

__init__(self,
model_name,
model_path)

Initialization method, which is suitable for models
created based on deep learning frameworks. Models
and labels are loaded using this method. This method
must be rewritten for models based on PyTorch and
Caffe to implement the model loading logic.

__init__(self,
model_path)

Initialization method, which is suitable for models
created based on machine learning frameworks. The
model path (self.model_path) is initialized using this
method. In Spark_MLlib, this method also initializes
SparkSession (self.spark).

_preprocess(self,
data)

Preprocess method, which is called before an inference
request and is used to convert the original request data
of an API into the expected input data of a model

_inference(self,
data)

Inference request method. You are advised not to
rewrite the method because once the method is
rewritten, the built-in inference process of ModelArts
will be overwritten and the custom inference logic will
run.

_postprocess(self,
data)

Postprocess method, which is called after an inference
request is complete and is used to convert the model
output to the API output

NO TE

● You can choose to rewrite the preprocess and postprocess methods to implement
preprocessing of the API input and postprocessing of the inference output.

● Rewriting the init method of the parent model class may cause an AI application to
run abnormally.

3. The attribute that can be used is the local path where the model resides. The
attribute name is self.model_path. In addition, PySpark-based models can use
self.spark to obtain the SparkSession object in customize_service.py.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

NO TE

An absolute path is required for reading files in the inference code. You can obtain the
local path of the model from the self.model_path attribute.

● When TensorFlow, Caffe, or MXNet is used, self.model_path indicates the path of
the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
with open(os.path.join(self.model_path, 'label.json')) as f:
 self.label = json.load(f)

● When PyTorch, Scikit_Learn, or PySpark is used, self.model_path indicates the path
of the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
dir_path = os.path.dirname(os.path.realpath(self.model_path))
with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

4. data imported through the API for pre-processing, actual inference request,
and post-processing can be multipart/form-data or application/json.
– multipart/form-data request

curl -X POST \
 <modelarts-inference-endpoint> \
 -F image1=@cat.jpg \
 -F images2=@horse.jpg

The corresponding input data is as follows:
[
 {
 "image1":{
 "cat.jpg":"<cat.jpg file io>"
 }
 },
 {
 "image2":{
 "horse.jpg":"<horse.jpg file io>"
 }
 }
]

– application/json request
 curl -X POST \
 <modelarts-inference-endpoint> \
 -d '{
 "images":"base64 encode image"
 }'

The corresponding input data is python dict.
 {
 "images":"base64 encode image"
 }

TensorFlow Inference Script Example
The following is an example of TensorFlow MnistService. For more TensorFlow
inference code examples, see TensorFlow and TensorFlow 2.1.For details about
the inference code of other engines, see PyTorch and Caffe.
● Inference code

from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 def _preprocess(self, data):
 preprocessed_data = {}

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 784))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _postprocess(self, data):

 infer_output = {}

 for output_name, result in data.items():

 infer_output["mnist_result"] = result[0].index(max(result[0]))

 return infer_output

● Request
curl -X POST \ Real-time service address \ -F images=@test.jpg

● Response
{"mnist_result": 7}

The preceding code example resizes images imported to the user's form to adapt
to the model input shape. The 32×32 image is read from the Pillow library and
resized to 1×784 to match the model input. In subsequent processing, convert the
model output into a list for the RESTful API to display.

XGBoost Inference Script Example
For details about the inference code of other machine learning engines, see
PySpark and Scikit-learn.

coding:utf-8
import collections
import json
import xgboost as xgb
from model_service.python_model_service import XgSklServingBaseService

class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 xg_model = xgb.Booster(model_file=self.model_path)
 pre_data = xgb.DMatrix(data)
 pre_result = xg_model.predict(pre_data)
 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self, data):
 resp_data = []
 for element in data:

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

 resp_data.append({"predict_result": element})
 return resp_data

Inference Script Example of the Custom Inference Logic
Customize a dependency package in the configuration file by referring to Example
of a Model Configuration File Using a Custom Dependency Package. Then, use
the following code example to load the model in saved_model format for
inference.

NO TE

The logging module of Python used by the base inference image uses the default log level
Warning. Only warning logs can be queried by default. To query INFO logs, set the log level
to INFO in the code.

-*- coding: utf-8 -*-
import json
import os
import threading
import numpy as np
import tensorflow as tf
from PIL import Image
from model_service.tfserving_model_service import TfServingBaseService
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model_inputs = {}
 self.model_outputs = {}

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.get_tf_sess)
 thread.start()

 def get_tf_sess(self):
 # Load the model in saved_model format.
 # The session will be reused. Do not use the with statement.
 sess = tf.Session(graph=tf.Graph())
 meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING],
self.model_path)
 signature_defs = meta_graph_def.signature_def
 self.sess = sess
 signature = []

 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)
 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logger.warning("signatures more than one, use serving_default signature")
 model_signature = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 logger.info("model signature: %s", model_signature)

 for signature_name in meta_graph_def.signature_def[model_signature].inputs:

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

 tensorinfo = meta_graph_def.signature_def[model_signature].inputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_inputs[signature_name] = op

 logger.info("model inputs: %s", self.model_inputs)

 for signature_name in meta_graph_def.signature_def[model_signature].outputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].outputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_outputs[signature_name] = op

 logger.info("model outputs: %s", self.model_outputs)

 def _preprocess(self, data):
 # Two request modes using HTTPS
 # 1. The request in form-data file format is as follows: data = {"Request key value":{"File
name":<File io>}}
 # 2. Request in JSON format is as follows: data = json.loads("JSON body transferred by the API")
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 28, 28))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _inference(self, data):
 feed_dict = {}
 for k, v in data.items():
 if k not in self.model_inputs.keys():
 logger.error("input key %s is not in model inputs %s", k, list(self.model_inputs.keys()))
 raise Exception("input key %s is not in model inputs %s" % (k, list(self.model_inputs.keys())))
 feed_dict[self.model_inputs[k]] = v

 result = self.sess.run(self.model_outputs, feed_dict=feed_dict)
 logger.info('predict result : ' + str(result))
 return result

 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 for output_name, results in data.items():

 for result in results:
 infer_output["mnist_result"].append(np.argmax(result))

 return infer_output

 def __del__(self):
 self.sess.close()

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

NO TE

To load models that are not supported by ModelArts or multiple models, specify the
loading path using the __init__ method. Example code:
-*- coding: utf-8 -*-
import os
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 # Obtain the path to the model folder.
 root = os.path.dirname(os.path.abspath(__file__))
 # test.onnx is the name of the model file to be loaded and must be stored in the model folder.
 self.model_path = os.path.join(root, test.onnx)

 # Loading multiple models, for example, test2.onnx
 # self.model_path2 = os.path.join(root, test2.onnx)

4.2 Model Templates

4.2.1 Introduction to Model Templates

NO TE

Importing a model from a template will be unavailable soon. After it goes offline, you can
use the templates for AI engine and model configurations by choosing OBS, setting AI
Engine to Custom, and importing your custom AI engine.

Because the configurations of models with the same functions are similar,
ModelArts integrates the configurations of such models into a common template.
By using this template, you can easily and quickly import models and create AI
applications without writing the config.json configuration file. In simple terms, a
template integrates AI engine and model configurations. Each template
corresponds to a specific AI engine and inference mode. With the templates, you
can quickly import models to ModelArts and create AI applications.

Background

Templates include general and non-general templates.

● Non-general templates are customized for specific scenarios with the input
and output mode fixed. For example, the TensorFlow-based image
classification template uses the built-in image processing mode.

● General templates integrate a specific AI engine and running environment
and use the undefined input and output mode. Select an input and output
mode based on the model function or application scenario to overwrite the
undefined mode. For example, an image classification model requires the
built-in image processing mode, and an object detection model requires the
built-in object detection mode.

NO TE

The models imported in undefined mode cannot be deployed as batch services.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Using a Template
Upload the model package to OBS before using the template. Store the model
files in the model directory. When creating an AI application using this template,
select the model directory. For details, see Importing a Meta Model from a
Template.

Supported Templates
● TensorFlow-based Image Classification Template
● TensorFlow-py27 General Template
● TensorFlow-py36 General Template
● MXNet-py27 General Template
● MXNet-py36 General Template
● PyTorch-py27 General Template
● PyTorch-py36 General Template
● Caffe-CPU-py27 General Template
● Caffe-GPU-py27 General Template
● Caffe-CPU-py36 General Template
● Caffe-GPU-py36 General Template
● Arm-Ascend Template

Supported Input and Output Modes
● Built-in Object Detection Mode
● Built-in Image Processing Mode
● Built-in Predictive Analytics Mode
● Undefined Mode

4.2.2 Templates

4.2.2.1 TensorFlow-based Image Classification Template

Introduction
AI engine: TensorFlow 1.8; Environment: Python 2.7. This template is used to
import a TensorFlow-based image classification model saved in SavedModel
format. This template uses the built-in image processing mode of ModelArts. For
details about the image processing mode, see Built-in Image Processing Mode.
Ensure that your model can process images whose key is images, because you
need to input an image whose key is images to the model for inference. When
using the template to import a model, select the model directory containing the
model files.

Template Input
The template input is the TensorFlow-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Input and Output Mode

The built-in image processing mode cannot be overwritten. You cannot select
another input and output mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description of
the model
 ├── variables Mandatory for the main file of the *.pb model. The folder must be named
variables and contains the weight deviation of the model.
 ├── variables.index Mandatory
 ├── variables.data-00000-of-00001 Mandatory
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.2 TensorFlow-py27 General Template

Introduction

AI engine: TensorFlow 1.8; Environment: python2.7; Input and output mode:
undefined mode. Select an appropriate input and output mode based on the
model function or application scenario. When using the template to import a
model, select the model directory containing the model files.

Template Input

The template input is the TensorFlow-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description of
the model
 ├── variables Mandatory for the main file of the *.pb model. The folder must be named
variables and contains the weight deviation of the model.
 ├── variables.index Mandatory
 ├── variables.data-00000-of-00001 Mandatory
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.3 TensorFlow-py36 General Template

Introduction

AI engine: TensorFlow 1.8; Environment: Python 3.6; Input and output mode:
undefined mode. Select an appropriate input and output mode based on the
model function or application scenario. When using the template to import a
model, select the model directory containing the model files.

Template Input

The template input is the TensorFlow-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description of
the model
 ├── variables Mandatory for the main file of the *.pb model. The folder must be named
variables and contains the weight deviation of the model.
 ├── variables.index Mandatory
 ├── variables.data-00000-of-00001 Mandatory
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.4 MXNet-py27 General Template

Introduction

AI engine: MXNet 1.2.1; Environment: Python 2.7; Input and output mode:
undefined mode. Select an appropriate input and output mode based on the
model function or application scenario. When using the template to import a
model, select the model directory containing the model files.

Template Input

The template input is the MXNet-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the MXNet-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
 ├── resnet-50-symbol.json (Mandatory) Model definition file, which contains the neural network
description of the model
 ├── resnet-50-0000.params (Mandatory) Model variable parameter file, which contains parameter
and weight information
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.5 MXNet-py36 General Template

Introduction

AI engine: MXNet 1.2.1; Environment: Python 3.6; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input

The template input is the MXNet-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.

● The model inference code file is mandatory. The file name must be
customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the MXNet-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
 ├── resnet-50-symbol.json (Mandatory) Model definition file, which contains the neural network
description of the model
 ├── resnet-50-0000.params (Mandatory) Model variable parameter file, which contains parameter
and weight information
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.6 PyTorch-py27 General Template

Introduction

AI engine: PyTorch 1.0; Environment: Python 2.7; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input

The template input is the PyTorch-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Input and Output Mode
Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example
Structure of the PyTorch-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight information
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.7 PyTorch-py36 General Template

Introduction
AI engine: PyTorch 1.0; Environment: Python 3.6; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input
The template input is the PyTorch-based model package stored on OBS. Ensure
that the OBS directory you use and ModelArts are in the same region. For details
about model package requirements, see Model Package Example.

Input and Output Mode
Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example
Structure of the PyTorch-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight information
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.8 Caffe-CPU-py27 General Template

Introduction
AI engine: CPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode:
undefined mode. Select an appropriate input and output mode based on the
model function or application scenario. When using the template to import a
model, select the model directory containing the model files.

Template Input
The template input is the Caffe-based model package stored on OBS. Ensure that
the OBS directory you use and ModelArts are in the same region. For details about
model package requirements, see Model Package Example.

Input and Output Mode
Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

● The model inference code file is mandatory. The file name must be
customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example
Structure of the Caffe-based model package

When publishing the model, you only need to specify the model directory.
OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 |── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 |── deploy.prototxt (Mandatory) Caffe model file, which contains information such as the model
network structure
 |── resnet.caffemodel (Mandatory) Caffe model file, which contains variable and weight information
 |── customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.9 Caffe-GPU-py27 General Template

Introduction
AI engine: GPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input
The template input is the Caffe-based model package stored on OBS. Ensure that
the OBS directory you use and ModelArts are in the same region. For details about
model package requirements, see Model Package Example.

Input and Output Mode
Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the Caffe-based model package

When publishing the model, you only need to specify the model directory.
OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 |── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 |── deploy.prototxt (Mandatory) Caffe model file, which contains information such as the model
network structure
 |── resnet.caffemodel (Mandatory) Caffe model file, which contains variable and weight information
 |── customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.10 Caffe-CPU-py36 General Template

Introduction

AI engine: CPU-based Caffe 1.0; Environment: Python 3.6; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input

The template input is the Caffe-based model package stored on OBS. Ensure that
the OBS directory you use and ModelArts are in the same region. For details about
model package requirements, see Model Package Example.

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example
Structure of the Caffe-based model package

When publishing the model, you only need to specify the model directory.
OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 |── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 |── deploy.prototxt (Mandatory) Caffe model file, which contains information such as the model
network structure
 |── resnet.caffemodel (Mandatory) Caffe model file, which contains variable and weight information
 |── customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.11 Caffe-GPU-py36 General Template

Introduction
AI engine: GPU-based Caffe 1.0; Environment: Python 3.6; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input
The template input is the Caffe-based model package stored on OBS. Ensure that
the OBS directory you use and ModelArts are in the same region. For details about
model package requirements, see Model Package Example.

Input and Output Mode
Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code
├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example

Structure of the Caffe-based model package

When publishing the model, you only need to specify the model directory.
OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 |── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 |── deploy.prototxt (Mandatory) Caffe model file, which contains information such as the model
network structure
 |── resnet.caffemodel (Mandatory) Caffe model file, which contains variable and weight information
 |── customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.2.12 Arm-Ascend Template

Introduction

AI engine: MindSpore; Environment: Python 3.5; Input and output mode:
Undefined. Select an appropriate input and output mode based on the model
function or application scenario. When using the template to import a model,
select the model directory containing the model files.

Template Input

The template input is the OM-based model package stored on OBS. Ensure that
the OBS directory you use and ModelArts are in the same region. For details about
model package requirements, see Model Package Example.

Input and Output Mode

Undefined Mode can be overwritten. You can select another input and output
mode during model creation.

Model Package Specifications
● The model package must be stored in the OBS folder named model. Model

files and the model inference code file are stored in the model folder.
● The model inference code file is mandatory. The file name must be

customize_service.py. Only one inference code file can exist in the model
folder. For details about how to write model inference code, see
Specifications for Writing Model Inference Code .

● The structure of the model package imported using the template is as follows:
model/
│
├── Model file //(Mandatory) The model file format varies according to the engine. For
details, see the model package example.
├── Custom Python package //(Optional) User's Python package, which can be directly
referenced in model inference code

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

├── customize_service.py //(Mandatory) Model inference code file. The file name must be
customize_service.py. Otherwise, the code is not considered as inference code.

Model Package Example
Structure of the OM-based model package

When publishing the model, you only need to specify the model directory.

OBS bucket/directory name
|── model (Mandatory) The folder must be named model and is used to store model-related files.
 ├── <<Custom Python package>> (Optional) User's Python package, which can be directly referenced
in model inference code
 ├── model.om (Mandatory) Protocol buffer file, which contains the diagram description of the
model
 ├──customize_service.py (Mandatory) Model inference code file. The file must be named
customize_service.py. Only one inference code file exists. The .py file on which customize_service.py
depends can be directly put in the model directory.

4.2.3 Input and Output Modes

4.2.3.1 Built-in Object Detection Mode

Input
This is a built-in input and output mode for object detection. The models using
this mode are identified as object detection models. The prediction request path
is /, the request protocol is HTTP, the request method is POST, Content-Type is
multipart/form-data, key is images, and type is file. Before selecting this mode,
ensure that your model can process the input data whose key is images.

Output
The inference result is returned in JSON format. For details about the fields, see
Table 4-11.

Table 4-11 Parameters

Field Type Description

detection_clas
ses

String array List of detected objects, for example,
["yunbao","cat"]

detection_box
es

Float array Coordinates of the bounding box, in the format

of

detection_scor
es

Float array Confidence scores of detected objects, which are
used to measure the detection accuracy

The JSON Schema of the inference result is as follows:

{
 "type": "object",
 "properties": {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

 "detection_classes": {
 "items": {
 "type": "string"
 },
 "type": "array"
 },
 "detection_boxes": {
 "items": {
 "minItems": 4,
 "items": {
 "type": "number"
 },
 "type": "array",
 "maxItems": 4
 },
 "type": "array"
 },
 "detection_scores": {
 "items": {
 "type": "string"
 },
 "type": "array"
 }
 }
}

Sample Request
In this mode, input an image to be processed in the inference request. The
inference result is returned in JSON format. The following are examples:
● Performing prediction on the console

On the Prediction tab page of the service details page, upload an image and
click Predict to obtain the prediction result.

● Using Postman to call a RESTful API for prediction
After a model is deployed as a service, you can obtain the API URL on the
Usage Guides tab page of the service details page.
– On the Headers tab page, set Content-Type to multipart/form-data

and X-Auth-Token to the actual token obtained.

Figure 4-1 Setting the request header

– On the Body tab page, set the request body. Set key to images, select
File, select the image to be processed, and click send to send your
prediction request.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

Figure 4-2 Setting the request body

4.2.3.2 Built-in Image Processing Mode

Input
The built-in image processing input and output mode can be applied to models
such as image classification, object detection, and image semantic segmentation.
The prediction request path is /, the request protocol is HTTPS, the request
method is POST, Content-Type is multipart/form-data, key is images, and type
is file. Before selecting this mode, ensure that your model can process the input
data whose key is images.

Output
The inference result is returned in JSON format. The specific fields are determined
by the model.

Sample Request
In this mode, input an image to be processed in the inference request. The
response in JSON format varies according to the model. The following are
examples:

● Performing prediction on the console
● Using Postman to call a RESTful API for prediction

After a model is deployed as a service, you can obtain the API URL on the
Usage Guides tab page of the service details page. On the Body tab page, set
the request body. Set key to images, select File, select the image to be
processed, and click send to send your prediction request.

Figure 4-3 Calling a RESTful API

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

4.2.3.3 Built-in Predictive Analytics Mode

Input

This is a built-in input and output mode for predictive analytics. The models using
this mode are identified as predictive analytics models. The prediction request
path is /, the request protocol is HTTP, the request method is POST, and Content-
Type is application/json. The request body is in JSON format. For details about
the JSON fields, see Table 4-12. Before selecting this mode, ensure that your
model can process the input data in JSON Schema format. For details about the
JSON Schema format, see the official guide.

Table 4-12 JSON field description

Field Type Description

data Data structure Inference data. For details, see Table 4-13.

Table 4-13 Data description

Field Type Description

req_data ReqData array List of inference data

ReqData is of the Object type and indicates the inference data. The data structure
is determined by the application scenario. For models using this mode, the
preprocessing logic in the custom model inference code should be able to correctly
process the data inputted in the format defined by the mode.

The JSON Schema of a prediction request is as follows:

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [{
 "type": "object",
 "properties": {}
 }],
 "type": "array"
 }
 }
 }
 }
}

Output

The inference result is returned in JSON format. For details about the JSON fields,
see Table 4-14.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

https://json-schema.org/understanding-json-schema/reference/array.html

Table 4-14 JSON field description

Field Type Description

data Data structure Inference data. For details, see Table
4-15.

Table 4-15 Data description

Field Type Description

resp_data RespData array List of prediction results

Similar to ReqData, RespData is also of the Object type and indicates the
prediction result. Its structure is determined by the application scenario. For
models using this mode, the postprocessing logic in the custom model inference
code should be able to correctly output data in the format defined by the mode.

The JSON Schema of a prediction result is as follows:

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [{
 "type": "object",
 "properties": {}
 }]
 }
 }
 }
 }
}

Sample Request

In this mode, input the data to be predicted in JSON format. The prediction result
is returned in JSON format. The following are examples:

● Performing prediction on the console

On the Prediction tab page of the service details page, enter inference code
and click Predict to obtain the prediction result.

● Using Postman to call a RESTful API for prediction

After a model is deployed as a service, you can obtain the API URL on the
Usage Guides tab page of the service details page.

– On the Headers tab page, set Content-Type to application/json and X-
Auth-Token to the actual token obtained.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Figure 4-4 Setting the request header for prediction

– On the Body tab page, edit the data to be predicted and click send to
send your prediction request.

4.2.3.4 Undefined Mode

Description
The undefined mode does not define the input and output mode. The input and
output mode is determined by the model. Select this mode only when the existing
input and output mode is not applicable to the application scenario of the model.
The models imported in undefined mode cannot be deployed as batch services. In
addition, the service prediction page may not be displayed properly.

Input
No limit.

Output
No limit.

Sample Request
The undefined mode has no specific sample request because the input and output
of the request are entirely determined by the model.

4.3 Examples of Custom Scripts

4.3.1 TensorFlow
There are two types of TensorFlow APIs, Keras and tf. They use different code for
training and saving models, but the same code for inference.

Training a Model (Keras API)
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

Import a training dataset.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

from keras.layers import Dense
from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

Define a model network.
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(units=10, activation='softmax'))

Define an optimizer and loss functions.
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.summary()
Train the model.
model.fit(x_train, y_train, epochs=2)
Evaluate the model.
model.evaluate(x_test, y_test)

Saving a Model (Keras API)
from keras import backend as K

K.get_session().run(tf.global_variables_initializer())

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={"images" : model.input},
 outputs={"scores" : model.output}
)

Define a save path.
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

 sess = K.get_session(),
 # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment.
 tags=[tf.saved_model.tag_constants.SERVING],
 """
 signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows:
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
 """
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
 predict_signature
 }

)
builder.save()

Training a Model (tf API)
from __future__ import print_function

import gzip
import os
import urllib

import numpy

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

import tensorflow as tf
from six.moves import urllib

Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/.
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000

def maybe_download(filename, work_directory):
 """Download the data from Yann's website, unless it's already here."""
 if not os.path.exists(work_directory):
 os.mkdir(work_directory)
 filepath = os.path.join(work_directory, filename)
 if not os.path.exists(filepath):
 filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
 statinfo = os.stat(filepath)
 print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
 return filepath

def _read32(bytestream):
 dt = numpy.dtype(numpy.uint32).newbyteorder('>')
 return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
 """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2051:
 raise ValueError(
 'Invalid magic number %d in MNIST image file: %s' %
 (magic, filename))
 num_images = _read32(bytestream)
 rows = _read32(bytestream)
 cols = _read32(bytestream)
 buf = bytestream.read(rows * cols * num_images)
 data = numpy.frombuffer(buf, dtype=numpy.uint8)
 data = data.reshape(num_images, rows, cols, 1)
 return data

def dense_to_one_hot(labels_dense, num_classes=10):
 """Convert class labels from scalars to one-hot vectors."""
 num_labels = labels_dense.shape[0]
 index_offset = numpy.arange(num_labels) * num_classes
 labels_one_hot = numpy.zeros((num_labels, num_classes))
 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
 return labels_one_hot

def extract_labels(filename, one_hot=False):
 """Extract the labels into a 1D uint8 numpy array [index]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2049:
 raise ValueError(
 'Invalid magic number %d in MNIST label file: %s' %
 (magic, filename))
 num_items = _read32(bytestream)
 buf = bytestream.read(num_items)
 labels = numpy.frombuffer(buf, dtype=numpy.uint8)
 if one_hot:

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

 return dense_to_one_hot(labels)
 return labels

class DataSet(object):
 """Class encompassing test, validation and training MNIST data set."""

 def __init__(self, images, labels, fake_data=False, one_hot=False):
 """Construct a DataSet. one_hot arg is used only if fake_data is true."""

 if fake_data:
 self._num_examples = 10000
 self.one_hot = one_hot
 else:
 assert images.shape[0] == labels.shape[0], (
 'images.shape: %s labels.shape: %s' % (images.shape,
 labels.shape))
 self._num_examples = images.shape[0]

 # Convert shape from [num examples, rows, columns, depth]
 # to [num examples, rows*columns] (assuming depth == 1)
 assert images.shape[3] == 1
 images = images.reshape(images.shape[0],
 images.shape[1] * images.shape[2])
 # Convert from [0, 255] -> [0.0, 1.0].
 images = images.astype(numpy.float32)
 images = numpy.multiply(images, 1.0 / 255.0)
 self._images = images
 self._labels = labels
 self._epochs_completed = 0
 self._index_in_epoch = 0

 @property
 def images(self):
 return self._images

 @property
 def labels(self):
 return self._labels

 @property
 def num_examples(self):
 return self._num_examples

 @property
 def epochs_completed(self):
 return self._epochs_completed

 def next_batch(self, batch_size, fake_data=False):
 """Return the next `batch_size` examples from this data set."""
 if fake_data:
 fake_image = [1] * 784
 if self.one_hot:
 fake_label = [1] + [0] * 9
 else:
 fake_label = 0
 return [fake_image for _ in range(batch_size)], [
 fake_label for _ in range(batch_size)
]
 start = self._index_in_epoch
 self._index_in_epoch += batch_size
 if self._index_in_epoch > self._num_examples:
 # Finished epoch
 self._epochs_completed += 1
 # Shuffle the data
 perm = numpy.arange(self._num_examples)
 numpy.random.shuffle(perm)
 self._images = self._images[perm]
 self._labels = self._labels[perm]

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

 # Start next epoch
 start = 0
 self._index_in_epoch = batch_size
 assert batch_size <= self._num_examples
 end = self._index_in_epoch
 return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False):
 """Return training, validation and testing data sets."""

 class DataSets(object):
 pass

 data_sets = DataSets()

 if fake_data:
 data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
 return data_sets

 local_file = maybe_download(TRAIN_IMAGES, train_dir)
 train_images = extract_images(local_file)

 local_file = maybe_download(TRAIN_LABELS, train_dir)
 train_labels = extract_labels(local_file, one_hot=one_hot)

 local_file = maybe_download(TEST_IMAGES, train_dir)
 test_images = extract_images(local_file)

 local_file = maybe_download(TEST_LABELS, train_dir)
 test_labels = extract_labels(local_file, one_hot=one_hot)

 validation_images = train_images[:VALIDATION_SIZE]
 validation_labels = train_labels[:VALIDATION_SIZE]
 train_images = train_images[VALIDATION_SIZE:]
 train_labels = train_labels[VALIDATION_SIZE:]

 data_sets.train = DataSet(train_images, train_labels)
 data_sets.validation = DataSet(validation_images, validation_labels)
 data_sets.test = DataSet(test_images, test_labels)
 return data_sets

training_iteration = 1000

modelarts_example_path = './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
 tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

for _ in range(training_iteration):
 batch = mnist.train.next_batch(50)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
 accuracy, feed_dict={
 x: mnist.test.images,
 y_: mnist.test.labels
 }))
print('Done training!')

Saving a Model (tf API)
Export the model.
The model needs to be saved using the saved_model API.
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
prediction_signature = (
 tf.saved_model.signature_def_utils.build_signature_def(
 inputs={'images': tensor_info_x},
 outputs={'scores': tensor_info_y},
 method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
 # Set tag to serve/tf.saved_model.tag_constants.SERVING.
 sess, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'predict_images':
 prediction_signature,
 },
 legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

Inference Code (Keras and tf APIs)
In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the import
statements of different types of parent model classes, see Table 4-9.
from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 # Match the model input with the user's HTTPS API input during preprocessing.
 # The model input corresponding to the preceding training part is {"images":<array>}.
 def _preprocess(self, data):

 preprocessed_data = {}
 images = []
 # Iterate the input data.
 for k, v in data.items():
 for file_name, file_content in v.items():

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1,784))
 images.append(image1)
 # Return the numpy array.
 images = np.array(images,dtype=np.float32)
 # Perform batch processing on multiple input samples and ensure that the shape is the same as that
inputted during training.
 images.resize((len(data), 784))
 preprocessed_data['images'] = images
 return preprocessed_data

 # Processing logic of the inference for invoking the parent class.

 # The output corresponding to model saving in the preceding training part is {"scores":<array>}.
 # Postprocess the HTTPS output.
 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 # Iterate the model output.
 for output_name, results in data.items():
 for result in results:
 infer_output["mnist_result"].append(result.index(max(result)))
 return infer_output

4.3.2 TensorFlow 2.1

Training and Saving a Model
from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(256, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 # Name the output layer output, which is used to obtain the result during model inference.
 tf.keras.layers.Dense(10, activation='softmax', name="output")
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10)

tf.keras.models.save_model(model, "./mnist")

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

import logging
import threading

import numpy as np
import tensorflow as tf

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService

logger = logging.getLogger()
logger.setLevel(logging.INFO)

class MnistService(TfServingBaseService):

 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model = None
 self.predict = None

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)
 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.load_model)
 thread.start()

 def load_model(self):
 # Load the model in saved_model format.
 self.model = tf.saved_model.load(self.model_path)

 signature_defs = self.model.signatures.keys()

 signature = []
 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)

 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logging.warning("signatures more than one, use serving_default signature from %s", signature)
 model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 self.predict = self.model.signatures[model_signature]

 def _preprocess(self, data):
 images = []
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((28, 28, 1))
 images.append(image1)

 images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
 preprocessed_data = images

 return preprocessed_data

 def _inference(self, data):

 return self.predict(data)

 def _postprocess(self, data):

 return {
 "result": int(data["output"].numpy()[0].argmax())
 }

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

4.3.3 PyTorch

Training a Model
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

Define a network structure.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
The second dimension of the input must be 784.
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)
 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def train(model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % 10 == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

device = torch.device("cpu")

batch_size=64

kwargs={}

train_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=True, download=True,
 transform=transforms.Compose([

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

 transforms.ToTensor()
])),
 batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=False, transform=transforms.Compose([
 transforms.ToTensor()
])),
 batch_size=1000, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())

for epoch in range(1, 2 + 1):
 train(model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)

Saving a Model
The model must be saved using state_dict and can be deployed remotely.
torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")

Inference Code

In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

from PIL import Image
import log
from model_service.pytorch_model_service import PTServingBaseService
import torch.nn.functional as F

import torch.nn as nn
import torch
import json

import numpy as np

logger = log.getLogger(__name__)

import torchvision.transforms as transforms

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize((28,28)),
 # Transform to a PyTorch tensor.
 transforms.ToTensor()
])

import os

class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)
 # Call the customized function to load the model.
 self.model = Mnist(model_path)
 # Load tags.
 self.label = [0,1,2,3,4,5,6,7,8,9]
 # Labels can also be loaded by label file.
 # Store the label.json file in the model directory. The following information is read:
 dir_path = os.path.dirname(os.path.realpath(self.model_path))

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

 with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

 def _preprocess(self, data):

 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)
 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()
 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))
 # CPU or GPU mapping
 model.to(device)
 # Declare an inference mode.
 model.eval()

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

 return model

4.3.4 Caffe

Training and Saving a Model
lenet_train_test.prototxt file

name: "LeNet"
layer {
 name: "mnist"
 type: "Data"
 top: "data"
 top: "label"
 include {
 phase: TRAIN
 }
 transform_param {
 scale: 0.00390625
 }
 data_param {
 source: "examples/mnist/mnist_train_lmdb"
 batch_size: 64
 backend: LMDB
 }
}
layer {
 name: "mnist"
 type: "Data"
 top: "data"
 top: "label"
 include {
 phase: TEST
 }
 transform_param {
 scale: 0.00390625
 }
 data_param {
 source: "examples/mnist/mnist_test_lmdb"
 batch_size: 100
 backend: LMDB
 }
}
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

 name: "pool1"
 type: "Pooling"
 bottom: "conv1"
 top: "pool1"
 pooling_param {
 pool: MAX
 kernel_size: 2
 stride: 2
 }
}
layer {
 name: "conv2"
 type: "Convolution"
 bottom: "pool1"
 top: "conv2"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 convolution_param {
 num_output: 50
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "pool2"
 type: "Pooling"
 bottom: "conv2"
 top: "pool2"
 pooling_param {
 pool: MAX
 kernel_size: 2
 stride: 2
 }
}
layer {
 name: "ip1"
 type: "InnerProduct"
 bottom: "pool2"
 top: "ip1"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 500
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

 top: "ip1"
}
layer {
 name: "ip2"
 type: "InnerProduct"
 bottom: "ip1"
 top: "ip2"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 10
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "accuracy"
 type: "Accuracy"
 bottom: "ip2"
 bottom: "label"
 top: "accuracy"
 include {
 phase: TEST
 }
}
layer {
 name: "loss"
 type: "SoftmaxWithLoss"
 bottom: "ip2"
 bottom: "label"
 top: "loss"
}

lenet_solver.prototxt file

The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of MNIST, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 500 training iterations.
test_interval: 500
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
Display every 100 iterations
display: 100
The maximum number of iterations
max_iter: 1000
snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver mode: CPU or GPU
solver_mode: CPU

Train the model.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt

The caffemodel file is generated after model training. Rewrite the
lenet_train_test.prototxt file to the lenet_deploy.prototxt file used for
deployment by modifying input and output layers.

name: "LeNet"
layer {
 name: "data"
 type: "Input"
 top: "data"
 input_param { shape: { dim: 1 dim: 1 dim: 28 dim: 28 } }
}
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "pool1"
 type: "Pooling"
 bottom: "conv1"
 top: "pool1"
 pooling_param {
 pool: MAX
 kernel_size: 2
 stride: 2
 }
}
layer {
 name: "conv2"
 type: "Convolution"
 bottom: "pool1"
 top: "conv2"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 convolution_param {
 num_output: 50
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

}
layer {
 name: "pool2"
 type: "Pooling"
 bottom: "conv2"
 top: "pool2"
 pooling_param {
 pool: MAX
 kernel_size: 2
 stride: 2
 }
}
layer {
 name: "ip1"
 type: "InnerProduct"
 bottom: "pool2"
 top: "ip1"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 500
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"
 top: "ip1"
}
layer {
 name: "ip2"
 type: "InnerProduct"
 bottom: "ip1"
 top: "ip2"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 10
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "prob"
 type: "Softmax"
 bottom: "ip2"
 top: "prob"
}

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

from model_service.caffe_model_service import CaffeBaseService

import numpy as np

import os, json

import caffe

from PIL import Image

class LenetService(CaffeBaseService):

 def __init__(self, model_name, model_path):
 # Call the inference method of the parent class.
 super(LenetService, self).__init__(model_name, model_path)

 # Configure preprocessing information.
 transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
 # Transform to NCHW.
 transformer.set_transpose('data', (2, 0, 1))
 # Perform normalization.
 transformer.set_raw_scale('data', 255.0)

 # If the batch size is set to 1, inference is supported for only one image.
 self.net.blobs['data'].reshape(1, 1, 28, 28)
 self.transformer = transformer

 # Define the class labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]

 def _preprocess(self, data):

 for k, v in data.items():
 for file_name, file_content in v.items():
 im = caffe.io.load_image(file_content, color=False)
 # Pre-process the images.
 self.net.blobs['data'].data[...] = self.transformer.preprocess('data', im)

 return

 def _postprocess(self, data):

 data = data['prob'][0, :]
 predicted = np.argmax(data)
 predicted = {"predicted" : str(predicted) }

 return predicted

4.3.5 XGBoost

Training and Saving a Model
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split

Prepare training data and setting parameters
iris = pd.read_csv('/home/ma-user/work/iris.csv')

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

X = iris.drop(['variety'],axis=1)
y = iris[['variety']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565)
params = {
 'booster': 'gbtree',
 'objective': 'multi:softmax',
 'num_class': 3,
 'gamma': 0.1,
 'max_depth': 6,
 'lambda': 2,
 'subsample': 0.7,
 'colsample_bytree': 0.7,
 'min_child_weight': 3,
 'silent': 1,
 'eta': 0.1,
 'seed': 1000,
 'nthread': 4,
}
plst = params.items()
dtrain = xgb.DMatrix(X_train, y_train)
num_rounds = 500
model = xgb.train(plst, dtrain, num_rounds)
model.save_model('/tmp/xgboost.m')

Before training, download the iris.csv dataset, decompress it, and upload it to
the /home/ma-user/work/ directory of the notebook instance. Download the
iris.csv dataset from https://gist.github.com/netj/8836201. For details about
how to upload a file to a notebook instance, see Upload Scenarios and Entries.

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json configuration and the customize_service.py inference
code must be included during the publishing. For details about how to compile
config.json, see Specifications for Editing a Model Configuration File . For
details about inference code, see Inference Code.

Inference Code

In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
import xgboost as xgb
from model_service.python_model_service import XgSklServingBaseService
class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 xg_model = xgb.Booster(model_file=self.model_path)
 pre_data = xgb.DMatrix(data)
 pre_result = xg_model.predict(pre_data)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

https://gist.github.com/netj/8836201
https://support.huaweicloud.com/intl/en-us/devtool-modelarts/modelarts_30_0044.html

 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self,data):
 resp_data = []
 for element in data:
 resp_data.append({"predictresult": element})
 return resp_data

4.3.6 PySpark

Training and Saving a Model
from pyspark.ml import Pipeline, PipelineModel
from pyspark.ml.linalg import Vectors
from pyspark.ml.classification import LogisticRegression

Prepare training data using tuples.
Prepare training data from a list of (label, features) tuples.
training = spark.createDataFrame([
 (1.0, Vectors.dense([0.0, 1.1, 0.1])),
 (0.0, Vectors.dense([2.0, 1.0, -1.0])),
 (0.0, Vectors.dense([2.0, 1.3, 1.0])),
 (1.0, Vectors.dense([0.0, 1.2, -0.5]))], ["label", "features"])

Create a training instance. The logistic regression algorithm is used for training.
Create a LogisticRegression instance. This instance is an Estimator.
lr = LogisticRegression(maxIter=10, regParam=0.01)

Train the logistic regression model.
Learn a LogisticRegression model. This uses the parameters stored in lr.
model = lr.fit(training)

Save the model to a local directory.
Save model to local path.
model.save("/tmp/spark_model")

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json configuration and the customize_service.py inference
code must be included during the publishing. For details about how to compile
config.json, see Specifications for Editing a Model Configuration File . For
details about inference code, see Inference Code.

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
import traceback

import model_service.log as log
from model_service.spark_model_service import SparkServingBaseService
from pyspark.ml.classification import LogisticRegression

logger = log.getLogger(__name__)

class UserService(SparkServingBaseService):

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

 # Pre-process data.
 def _preprocess(self, data):
 logger.info("Begin to handle data from user data...")
 # Read data.
 req_json = json.loads(data, object_pairs_hook=collections.OrderedDict)
 try:
 # Convert data to the spark dataframe format.
 predict_spdf = self.spark.createDataFrame(pd.DataFrame(req_json["data"]["req_data"]))
 except Exception as e:
 logger.error("check your request data does meet the requirements ?")
 logger.error(traceback.format_exc())
 raise Exception("check your request data does meet the requirements ?")
 return predict_spdf

 # Perform model inference.
 def _inference(self, data):
 try:
 # Load a model file.
 predict_model = LogisticRegression.load(self.model_path)
 # Perform data inference.
 prediction_result = predict_model.transform(data)
 except Exception as e:
 logger.error(traceback.format_exc())
 raise Exception("Unable to load model and do dataframe transformation.")
 return prediction_result

 # Post-process data.
 def _postprocess(self, pre_data):
 logger.info("Get new data to respond...")
 predict_str = pre_data.toPandas().to_json(orient='records')
 predict_result = json.loads(predict_str)
 return predict_result

4.3.7 Scikit-learn

Training and Saving a Model
import json
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
iris = pd.read_csv('/home/ma-user/work/iris.csv')
X = iris.drop(['variety'],axis=1)
y = iris[['variety']]
Create a LogisticRegression instance and train model
logisticRegression = LogisticRegression(C=1000.0, random_state=0)
logisticRegression.fit(X,y)
Save model to local path
joblib.dump(logisticRegression, '/tmp/sklearn.m')

Before training, download the iris.csv dataset, decompress it, and upload it to
the /home/ma-user/work/ directory of the notebook instance. Download the
iris.csv dataset from https://gist.github.com/netj/8836201. For details about
how to upload a file to a notebook instance, see Upload Scenarios and Entries.

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json and customize_service.py files must be contained
during publishing. For details about the definition method, see Introduction to
Model Package Specifications.

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://gist.github.com/netj/8836201
https://support.huaweicloud.com/intl/en-us/devtool-modelarts/modelarts_30_0044.html

about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
from sklearn.externals import joblib
from model_service.python_model_service import XgSklServingBaseService

class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 sk_model = joblib.load(self.model_path)
 pre_result = sk_model.predict(data)
 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self,data):
 resp_data = []
 for element in data:
 resp_data.append({"predictresult": element})
 return resp_data

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

5 ModelArts Monitoring on Cloud Eye

ModelArts Metrics

Setting Alarm Rules

Viewing Monitoring Metrics

5.1 ModelArts Metrics

Description

The cloud service platform provides Cloud Eye to help you better understand the
status of your ModelArts real-time services and models. You can use Cloud Eye to
automatically monitor your ModelArts real-time services and model loads in real
time and manage alarms and notifications so that you can obtain the
performance metrics of ModelArts and models.

Namespace

SYS.ModelArts

Monitoring Metrics

Table 5-1 ModelArts metrics

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

cpu_usag
e

CPU
Usage

CPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

mem_usa
ge

Memory
Usage

Memory usage
of ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

gpu_util GPU
Usage

GPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_mem
_usage

GPU
Memory
Usage

GPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

npu_util NPU
Usage

NPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

npu_mem
_usage

NPU
Memory
Usage

NPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

successful
ly_called_t
imes

Number
of
Successfu
l Calls

Times that
ModelArts has
been
successfully
called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

failed_call
ed_times

Number
of Failed
Calls

Times that
ModelArts failed
to be called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

total_calle
d_times

Total
Calls

Times that
ModelArts is
called
Unit: times/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

disk_read
_rate

Disk Read
Rate

Disk read rate of
ModelArts
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

disk_write
_rate

Disk
Write
Rate

Disk write rate
of ModelArts
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

send_byte
s_rate

Uplink
rate

Outbound traffic
rate of
ModelArts
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

recv_bytes
_rate

Downlink
rate

Inbound traffic
rate of
ModelArts

≥ bit/
minute

ModelArts
model
loads

1 minute

req_count
_2xx

2xx
Response
s

Number of
times that the
API returns a 2xx
response

≥ counts/
minute

ModelArts
real-time
services

1 minute

req_count
_4xx

4xx Errors Number of
times that the
API returns a 4xx
error

≥ counts/
minute

ModelArts
real-time
services

1 minute

req_count
_5xx

5xx Errors Number of
times that the
API returns a 5xx
error

≥ counts/
minute

ModelArts
real-time
services

1 minute

avg_laten
cy

Average
Latency

Average latency
of the API

≥ ms ModelArts
real-time
services

1 minute

If a measurement object has multiple measurement dimensions, all the
measurement dimensions are mandatory when you use an API to query
monitoring metrics.
● The following provides an example of using the multi-dimensional dim to

query a single monitoring metric:
dim.0=service_id,530cd6b0-86d7-4818-837f-935f6a27414d&dim.1="model_id,
3773b058-5b4f-4366-9035-9bbd9964714a

● The following provides an example of using the multi-dimensional dim to
query monitoring metrics in batches:
"dimensions": [
{
"name": "service_id",
"value": "530cd6b0-86d7-4818-837f-935f6a27414d"
}
{
"name": "model_id",
"value": "3773b058-5b4f-4366-9035-9bbd9964714a"
}
]

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Dimensions

Table 5-2 Dimension description

Key Value

service_id Real-time service ID

model_id Model ID

5.2 Setting Alarm Rules

Scenario
Setting alarm rules allows you to customize the monitored objects and notification
policies so that you can know the status of ModelArts real-time services and
models in a timely manner.

An alarm rule includes the alarm rule name, monitored object, metric, threshold,
monitoring interval, and whether to send a notification. This section describes how
to set alarm rules for ModelArts services and models.

NO TE

Only real-time services in the Running status can be interconnected with CES.

Prerequisites
● A ModelArts real-time service has been created.
● ModelArts monitoring has been enabled on Cloud Eye. To do so, log in to the

Cloud Eye console. On the Cloud Eye page, click Custom Monitoring. Then,
enable ModelArts monitoring as prompted.

Procedure
Set an alarm rule in any of the following ways:

● Set an alarm rule for all ModelArts services.
● Set an alarm rule for a ModelArts service.
● Set an alarm rule for a model version.
● Set an alarm rule for a metric of a service or model version.

Method 1: Setting an Alarm Rule for All ModelArts Services
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the navigation pane on the left, choose Alarm Management > Alarm

Rules and click Create Alarm Rule.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

4. On the Create Alarm Rule page, set Resource Type to ModelArts,
Dimension to Service, and Method to Configure manually, and set alarm
policies. Then, confirm settings and click Create.

Method 2: Setting an Alarm Rule for a Single Service
1. Log in to the management console.

2. On the Service List, click Cloud Eye under Management & Governance.

3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.

4. Select a real-time service for which you want to create an alarm rule and click
Create Alarm Rule in the Operation column.

5. On the Create Alarm Rule page, create an alarm rule for ModelArts real-time
services and models as prompted.

Method 3: Setting an Alarm Rule for a Model Version
1. Log in to the management console.

2. On the Service List, click Cloud Eye under Management & Governance.

3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.

4. Click the down arrow next to the target real-time service name. Then, click
Create Alarm Rule in the Operation column of the target version.

5. On the Create Alarm Rule page, create an alarm rule for model loads as
prompted.

Method 4: Setting an Alarm Rule for a Metric of a Service or Model Version
1. Log in to the management console.

2. On the Service List, click Cloud Eye under Management & Governance.

3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.

4. Click the down arrow next to the target real-time service name. Then, click
the target version and view alarm rule details.

5. On the alarm rule details page, click the plus sign (+) in the upper right
corner of a metric and set an alarm rule for the metric.

5.3 Viewing Monitoring Metrics

Scenario

Cloud Eye on the cloud service platform monitors the status of ModelArts real-
time services and model loads. You can obtain the monitoring metrics of each
ModelArts real-time service and model loads on the management console.
Monitored data requires a period of time for transmission and display. The status
of ModelArts displayed on the Cloud Eye console is usually the status obtained 5
to 10 minutes before. You can view the monitored data of a newly created real-
time service 5 to 10 minutes later.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Prerequisites
● The ModelArts real-time service is running properly.
● Alarm rules have been configured on the Cloud Eye page. For details, see

Setting Alarm Rules.
● The real-time service has been properly running for at least 10 minutes.
● The monitored data and graphics are available for a new real-time service

after the service runs for at least 10 minutes.
● Cloud Eye does not display the metrics of a faulty or deleted real-time service.

The monitoring metrics can be viewed after the real-time service starts or
recovers.

Monitoring data is unavailable without alarm rules configured on Cloud Eye. For
details, see Setting Alarm Rules.

Procedure
1. Log in to the management console.
2. In the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. View monitoring graphs.

– Viewing monitoring graphs of a real-time service: Click View Metric in
the Operation column.

– Viewing monitoring graphs of the model loads: Click next to the
target real-time service, and click View Metric in the Operation column
of the target model.

5. In the monitoring area, you can select a duration to view the monitoring data.
You can view the monitoring data in the recent 1 hour, 3 hours, or 12 hours.

To view the monitoring curve of a longer time range, click to enlarge the
graph.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

	Contents
	1 Introduction to Inference
	2 Managing AI Applications
	2.1 Introduction to AI Application Management
	2.2 Creating an AI Application
	2.2.1 Importing a Meta Model from a Training Job
	2.2.2 Importing a Meta Model from a Template
	2.2.3 Importing a Meta Model from OBS
	2.2.4 Importing a Meta Model from a Container Image

	2.3 Viewing the AI Application List
	2.4 Viewing Details About an AI Application
	2.5 Managing AI Application Versions
	2.6 Viewing Events of an AI Application

	3 Deploying an AI Application as a Service
	3.1 Deploying AI Applications as Real-Time Services
	3.1.1 Deploying as a Real-Time Service
	3.1.2 Viewing Service Details
	3.1.3 Testing the Deployed Service
	3.1.4 Accessing Real-Time Services
	3.1.4.1 Accessing a Real-Time Service
	3.1.4.2 Authentication Mode
	3.1.4.2.1 Access Authenticated Using a Token
	3.1.4.2.2 Access Authenticated Using an AK/SK
	3.1.4.2.3 Access Authenticated Using an Application

	3.1.4.3 Access Mode
	3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)
	3.1.4.3.2 Accessing a Real-Time Service (VPC High-Speed Channel)

	3.1.4.4 Accessing a Real-Time Service Through WebSocket
	3.1.4.5 Server-Sent Events

	3.1.5 Integrating a Real-Time Service
	3.1.6 Cloud Shell

	3.2 Deploying AI Applications as Batch Services
	3.2.1 Deploying as a Batch Service
	3.2.2 Viewing Details About a Batch Service
	3.2.3 Viewing the Batch Service Prediction Result

	3.3 Upgrading a Service
	3.4 Starting, Stopping, Deleting, or Restarting a Service
	3.5 Viewing Service Events

	4 Inference Specifications
	4.1 Model Package Specifications
	4.1.1 Introduction to Model Package Specifications
	4.1.2 Specifications for Editing a Model Configuration File
	4.1.3 Specifications for Writing Model Inference Code

	4.2 Model Templates
	4.2.1 Introduction to Model Templates
	4.2.2 Templates
	4.2.2.1 TensorFlow-based Image Classification Template
	4.2.2.2 TensorFlow-py27 General Template
	4.2.2.3 TensorFlow-py36 General Template
	4.2.2.4 MXNet-py27 General Template
	4.2.2.5 MXNet-py36 General Template
	4.2.2.6 PyTorch-py27 General Template
	4.2.2.7 PyTorch-py36 General Template
	4.2.2.8 Caffe-CPU-py27 General Template
	4.2.2.9 Caffe-GPU-py27 General Template
	4.2.2.10 Caffe-CPU-py36 General Template
	4.2.2.11 Caffe-GPU-py36 General Template
	4.2.2.12 Arm-Ascend Template

	4.2.3 Input and Output Modes
	4.2.3.1 Built-in Object Detection Mode
	4.2.3.2 Built-in Image Processing Mode
	4.2.3.3 Built-in Predictive Analytics Mode
	4.2.3.4 Undefined Mode

	4.3 Examples of Custom Scripts
	4.3.1 TensorFlow
	4.3.2 TensorFlow 2.1
	4.3.3 PyTorch
	4.3.4 Caffe
	4.3.5 XGBoost
	4.3.6 PySpark
	4.3.7 Scikit-learn

	5 ModelArts Monitoring on Cloud Eye
	5.1 ModelArts Metrics
	5.2 Setting Alarm Rules
	5.3 Viewing Monitoring Metrics

