Querying the Details About a Training Job Configuration
Function
This API is used to obtain the details about a specified training job configuration.
URI
GET /v1/{project_id}/training-job-configs/{config_name}
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain a project ID, see Obtaining a Project ID and Name. |
config_name |
Yes |
String |
Name of a training job configuration |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
config_type |
No |
String |
Configuration type to be queried. Options:
|
Request Body
None
Response Body
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
error_message |
String |
Error message of a failed API call. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds. |
config_name |
String |
Name of a training job configuration |
config_desc |
String |
Description of a training job configuration |
worker_server_num |
Integer |
Number of workers in a training job |
app_url |
String |
Code directory of a training job |
boot_file_url |
String |
Boot file of a training job |
model_id |
Long |
Model ID of a training job |
parameter |
JSON Array |
Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a training job uses a custom image. For details, see Table 8. |
spec_id |
Long |
ID of the resource specifications selected for a training job |
data_url |
String |
Dataset of a training job |
dataset_id |
String |
Dataset ID of a training job |
dataset_version_id |
String |
Dataset version ID of a training job |
data_source |
JSON Array |
Dataset of a training job For details, see Table 4. |
engine_type |
Integer |
Engine type of a training job |
engine_name |
String |
Name of the engine selected for a training job |
engine_id |
Long |
ID of the engine selected for a training job |
engine_version |
String |
Version of the engine selected for a training job |
train_url |
String |
OBS URL of the output file of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
log_url |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
user_image_url |
String |
SWR URL of a custom image used by a training job |
user_command |
String |
Boot command used to start the container of a custom image of a training job |
spec_code |
String |
Resource specifications selected for a training job |
gpu_type |
String |
GPU type of the resource specifications |
create_time |
Long |
Time when a training job parameter configuration is created |
cpu |
String |
CPU memory of the resource specifications |
gpu_num |
Integer |
Number of GPUs of the resource specifications |
core |
String |
Number of cores of the resource specifications |
dataset_name |
String |
Dataset of a training job |
dataset_version_name |
String |
Dataset of a training job |
pool_id |
String |
ID of a resource pool |
pool_name |
String |
Name of a resource pool |
volumes |
JSON Array |
Storage volume that can be used by a training job. For details, see Table 5. |
nas_mount_path |
String |
Local mount path of SFS Turbo (NAS). Example value: /home/work/nas |
nas_share_addr |
String |
Shared path of SFS Turbo (NAS). Example value: 192.168.8.150:/ |
nas_type |
String |
Only NFS is supported. Example value: nfs |
Parameter |
Type |
Description |
---|---|---|
dataset_id |
String |
Dataset ID of a training job |
dataset_version |
String |
Dataset version ID of a training job |
type |
String |
Dataset type. Options:
|
data_url |
String |
OBS bucket path |
Parameter |
Type |
Description |
---|---|---|
nfs |
Object |
Storage volume of the shared file system type. Only the training jobs running in a resource pool with the shared file system network connected support such storage volumes. For details, see Table 6. |
host_path |
Object |
Storage volume of the host file system type. Only training jobs running in a dedicated resource pool support such storage volumes. For details, see Table 7. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
ID of an SFS Turbo file system |
src_path |
String |
Address of an SFS Turbo file system |
dest_path |
String |
Local path to a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
src_path |
String |
Local path to a host |
dest_path |
String |
Local path to a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
Sample Request
The following shows how to obtain the details about the job configuration named config123.
GET https://endpoint/v1/{project_id}/training-job-configs/config123
Sample Response
- Successful response
{ "spec_code": "modelarts.vm.gpu.v100", "user_image_url": "100.125.5.235:20202/jobmng/custom-cpu-base:1.0", "user_command": "bash -x /home/work/run_train.sh python /home/work/user-job-dir/app/mnist/mnist_softmax.py --data_url /home/work/user-job-dir/app/mnist_data", "gpu_type": "nvidia-v100", "dataset_version_id": "2ff0d6ba-c480-45ae-be41-09a8369bfc90", "engine_name": "TensorFlow", "is_success": true, "nas_mount_path": "/home/work/nas", "worker_server_num": 1, "nas_share_addr": "192.168.8.150:/", "train_url": "/test/minst/train_out/out1/", "nas_type": "nfs", "spec_id": 4, "parameter": [ { "label": "learning_rate", "value": 0.01 } ], "log_url": "/usr/log/", "config_name": "config123", "app_url": "/usr/app/", "create_time": 1559045426000, "dataset_id": "38277e62-9e59-48f4-8d89-c8cf41622c24", "volumes": [ { "nfs": { "id": "43b37236-9afa-4855-8174-32254b9562e7", "src_path": "192.168.8.150:/", "dest_path": "/home/work/nas", "read_only": false } }, { "host_path": { "src_path": "/root/work", "dest_path": "/home/mind", "read_only": false } } ], "cpu": "64", "model_id": 4, "boot_file_url": "/usr/app/boot.py", "dataset_name": "dataset-test", "pool_id": "pool9928813f", "config_desc": "This is a config desc test", "gpu_num": 1, "data_source": [ { "type": "obs", "data_url": "/test/minst/data/" } ], "pool_name": "pnt1", "dataset_version_name": "dataset-version-test", "core": "8", "engine_type": 1, "engine_id": 3, "engine_version": "TF-1.8.0-python2.7", "data_url": "/test/minst/data/" }
- Failed response
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
Status Code
For details about the status code, see Table 1.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot