Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page
Help Center/ ModelArts/ API Reference/ Use Cases/ Creating a Development Environment Instance

Creating a Development Environment Instance

Updated on 2024-05-30 GMT+08:00

This section describes how to create a development environment instance by calling ModelArts APIs.

Overview

The process for creating a development environment instance is as follows:

  1. Call the API for authentication to obtain a user token, which will be added in a request header for authentication.
  2. Call the API for querying supported images to view the image type and version in the development environment.
  3. Call the API for creating a notebook instance to create an instance.
  4. Call the API for querying details of a notebook instance to query the instance creation details based on the instance ID.
  5. Call the API for prolonging a notebook instance to reset the usage duration of the instance.
  6. Call the API for stopping a notebook instance to stop the instance that is running.
  7. Call the API for starting a notebook instance to restart the instance.
  8. Call the API for deleting a notebook instance to delete the instance that is no longer needed.

Prerequisites

Procedure

  1. Call the API for authentication to obtain a user token.
    1. Request body:

      URI: POST https://{iam_endpoint}/v3/auth/tokens

      Request header: Content-Type →application/json

      Request body:
      {
        "auth": {
          "identity": {
            "methods": ["password"],
            "password": {
              "user": {
                "name": "user_name", 
                "password": "user_password",
                "domain": {
                  "name": "domain_name"  
                }
              }
            }
          },
          "scope": {
            "project": {
              "name": "ap-southeast-1"  
            }
          }
        }
      }
      Set the following parameters based on site requirements:
      • iam_endpoint: IAM endpoint
      • user_name: IAM username
      • user_password: password of the login user
      • domain_name: account to which the user belongs
      • ap-southeast-1: project name, which is the region where ModelArts is deployed
    2. Status code 201 Created is returned. The X-Subject-Token value in the response header is the token.
      x-subject-token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...
  2. Call the API for querying supported images to view the image type and version in the development environment.

    1. Request body:

      URI: GET https://{ma_endpoint}/v1/{project_id}/images

      Request header:
      • X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...
      • Content-Type →application/json

      Set the following parameters based on site requirements:

      • ma_endpoint: ModelArts endpoint
      • project_id: user's project ID
      • X-auth-Token: token obtained in the previous step
    2. Status code 200 is returned. The response body is as follows:

      {
       "current": 0,
       "data": [
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.8",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "278e88d1-5b71-4766-8502-b3ba72e824d9",
         "name": "pytorch1.8-cuda10.2-cudnn7-ubuntu18.04",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "COMMON",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tag": "pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866992843,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0 and cuda10.1",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54202",
         "name": "mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tag": "mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "c0b31f09-1490-4555-9b8b-ab0b2de35b20",
         "name": "mindspore1.7.0-py3.7-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tag": "mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine TensorFlow2.1",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54100",
         "name": "tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "COMMON",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221121111529-d65d817",
         "tag": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221121111529-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1643166780367,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.10 and cuda10.2",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "d996b661-e127-48c4-a90a-fca29535f201",
         "name": "pytorch1.10-cuda10.2-cudnn7-ubuntu18.04",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "UNKNOWN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/pytorch_1_10:pytorch_1.10.2-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tag": "pytorch_1.10.2-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "Clean user customized base image include cuda10.2, conda",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "d937149a-785c-4d2d-a568-8dde7c06cca0",
         "name": "conda3-cuda10.2-cudnn7-ubuntu18.04",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "UNKNOWN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/user_defined_base:cuda_10.2-ubuntu_18.04-x86_64-20230404095316-7fcd503",
         "tag": "cuda_10.2-ubuntu_18.04-x86_64-20230404095316-7fcd503",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "Clean user customized base image only include conda",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "27542a4a-3b37-404d-add9-a7d2d2ce6893",
         "name": "conda3-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "UNKNOWN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/user_defined_base:ubuntu_18.04-x86_64-20230404095316-7fcd503",
         "tag": "ubuntu_18.04-x86_64-20230404095316-7fcd503",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.4",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54099",
         "name": "pytorch1.4-cuda10.1-cudnn7-ubuntu18.04",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/pytorch_1_4:pytorch_1.4-cuda_10.1-py37-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tag": "pytorch_1.4-cuda_10.1-py37-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866992868,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "GPU algorithm development and training, preconfigured with AI engine TensorFlow1.13.1",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "b80bbf3d-a7af-42f6-ad12-33ff9116ab0d",
         "name": "tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/tensorflow_1_13:tensorflow_1.13-cuda_10.0-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tag": "tensorflow_1.13-cuda_10.0-py_3.7-ubuntu_18.04-x86_64-20221118143845-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866992960,
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "create_at": 1608937196685,
         "description": "Ascend+ARM algorithm development and training. TensorFlow and MindSpore are preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "59a6e9f5-93c0-44dd-85b0-82f390c5d53a",
         "name": "tensorflow1.15-mindspore1.7.0-cann5.1.0-euler2.8-aarch64",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-arm-ascend-cp37:5.0.1-c81-20220726",
         "tag": "5.0.1-c81-20220726",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866992983,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "AI inference application development, preconfigured ModelBox and AI engine LibTorch, only SSH connection supported.",
         "dev_services": [
          "AI_FLOW",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54103",
         "name": "modelbox1.3.0-libtorch1.9.1-cuda10.2-cudnn8-euler2.9.6",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/modelarts-modelbox-libtorch-gpu-x86:1.3.0-20221223142251-b3da6d6",
         "tag": "1.3.0-20221223142251-b3da6d6",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866993005,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "AI inference application development, preconfigured ModelBox and AI engine TensorRT, only SSH connection supported.",
         "dev_services": [
          "AI_FLOW",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54101",
         "name": "modelbox1.3.0-tensorrt7.1.3-cuda10.2-cudnn8-euler2.9.6",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/modelarts-modelbox-tensorrt-gpu-x86:1.3.0-20221223142251-b3da6d6",
         "tag": "1.3.0-20221223142251-b3da6d6",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866993030,
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "description": "Ascend operator development. The professional operator development tool MindStudio is preconfigured, only SSH connection supported.",
         "dev_services": [
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54088",
         "name": "mindstudio5.0.rc1-ascend910-cann5.1.0-euler2.8.3-aarch64",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindstudio-modelarts-image:5.0.rc1-20230322101430-75f458a",
         "tag": "5.0.rc1-20230322101430-75f458a",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648866993052,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU algorithm development and training, preconfigured PySpark 2.4.5 and scala 2.11.12 for code development in local notebook and remote spark cluster including MRS and DLI",
         "dev_services": [
          "NOTEBOOK"
         ],
         "id": "0b2d0728-4c01-11ec-994f-001a7dda7112",
         "name": "spark2.4.5-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/pyspark_2_4_5:develop-remote-pyspark_2.4.5-py_3.7-cpu-ubuntu_18.04-x86_64-uid1000-20221222203856-fcc979e",
         "tag": "develop-remote-pyspark_2.4.5-py_3.7-cpu-ubuntu_18.04-x86_64-uid1000-20221222203856-fcc979e",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648867218663,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1605759392357,
         "description": "CPU algorithm development and training, preconfigured with the AI engine MindSpore-CPU",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "65f636a0-56cf-49df-b941-7d2a07ba8c8c",
         "name": "mindspore1.2.0-openmpi2.1.1-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_2_0:mindspore_1.2.0-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tag": "mindspore_1.2.0-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1643166780389,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1664501979865,
         "description": "",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "df78b3f7-98a4-4616-aef0-71cfff4195c9",
         "name": "spark",
         "namespace": "testdli002",
         "origin": "CUSTOMIZE",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "UNKNOWN",
         "size": 1133670676,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/testdli002/spark:2.4.5.tensorflow",
         "tag": "2.4.5.tensorflow",
         "tags": [],
         "type": "DEDICATED",
         "update_at": 1664501979865,
         "visibility": "PRIVATE",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1664513619044,
         "description": "",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "836ab55d-4a02-4dbb-b04f-ece555d642a8",
         "name": "tensorflow2_1_1",
         "namespace": "hwstaff_pub_cbuinfo_ei",
         "origin": "IMAGE_SAVE",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "COMMON",
         "size": 5094544544,
         "status": "ERROR",
         "status_message": "",
         "swr_path": "swr.myhuaweicloud.com/hwstaff_pub_cbuinfo_ei/tensorflow2_1_1:1.0.0",
         "tag": "1.0.0",
         "tags": [],
         "type": "DEDICATED",
         "update_at": 1664513676950,
         "visibility": "PRIVATE",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1668482562290,
         "description": "test",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "689c81b3-15dd-4500-b63e-1871e24eb391",
         "name": "pytorch_1_8",
         "namespace": "atelier",
         "origin": "CUSTOMIZE",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "UNKNOWN",
         "size": 8285974481,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/pytorch_1_8:pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64-20220926104358-041ba2e",
         "tag": "pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64-20220926104358-041ba2e",
         "tags": [],
         "type": "DEDICATED",
         "update_at": 1668482562290,
         "visibility": "PRIVATE",
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "description": "Ascend+ARM algorithm development and training. MindSpore is preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "f6d0908e-9596-41f9-9843-83089cbdd0de",
         "name": "mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3",
         "namespace": "atelier",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "UNKNOWN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-d910-20220906",
         "tag": "mindspore_1.7.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-d910-20220906",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "description": "Ascend+ARM algorithm development and training. TensorFlow is preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "c5b7507b-ca8d-48d5-a373-fe4b42c66ed8",
         "name": "tensorflow1.15-cann5.1.0-py3.7-euler2.8.3",
         "namespace": "atelier",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "UNKNOWN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/tensorflow_1_15_ascend:tensorflow_1.15-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-d910-20220906",
         "tag": "tensorflow_1.15-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-d910-20220906",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1678261148079,
         "description": "",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1ab81ef-f452-46b5-9663-6fc1f982f9e9",
         "name": "grafana",
         "namespace": "hwstaff_pub_cbuinfo_ei",
         "origin": "IMAGE_SAVE",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "COMMON",
         "size": 5247805223,
         "status": "ACTIVE",
         "status_message": "",
         "swr_path": "swr.myhuaweicloud.com/hwstaff_pub_cbuinfo_ei/grafana:v1.0",
         "tag": "v1.0",
         "tags": [],
         "type": "DEDICATED",
         "update_at": 1678261330238,
         "visibility": "PRIVATE",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1681973786157,
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "a5a43175-30a6-43d2-9596-38bee562f8c0",
         "name": "pytorch_1_8",
         "namespace": "sdk-test2",
         "origin": "CUSTOMIZE",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "UNKNOWN",
         "size": 2308736380,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/sdk-test2/pytorch_1_8:v2",
         "tag": "v2",
         "tags": [],
         "type": "DEDICATED",
         "update_at": 1681973786157,
         "visibility": "PRIVATE",
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "create_at": 1682670088194,
         "description": "Ascend+ARM algorithm development and training. MindSpore is preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "75cbf0f2-0a3e-48c9-b2c4-7e78af18d86e",
         "name": "mindspore_1.9.0-cann_6.0.0-py_3.7-euler_2.8.3",
         "namespace": "atelier",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "TRAIN",
         "size": 4011027643,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_9_ascend:mindspore_1.9.0-cann_6.0.0-py_3.7-euler_2.8.3-aarch64-d910-20221116111529",
         "tag": "mindspore_1.9.0-cann_6.0.0-py_3.7-euler_2.8.3-aarch64-d910-20221116111529",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1682670088197,
         "visibility": "PUBLIC",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "notebook2.0 gpu",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54092",
         "name": "notebook2.0-mul-kernel-cpu-cp36",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-gpu-cp36:5.0.1-release-v2-20220505",
         "tag": "5.0.1-release-v2-20220505",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1628221753209,
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "create_at": 1683537880541,
         "description": "Ascend+ARM algorithm development and training. MindSpore is preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "31ae7ba4-63e6-4fa6-8aeb-cb382953e414",
         "name": "mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3",
         "namespace": "atelier",
         "resource_categories": [
          "ASCEND"
         ],
         "service_type": "COMMON",
         "size": 4057170552,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_10_ascend:mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3-aarch64-d910-20230303173945-815d627",
         "tag": "mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3-aarch64-d910-20230303173945-815d627",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1683537880548,
         "visibility": "PUBLIC",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU algorithm development and training, including the MLStudio tool for graphical ML algorithm development, and preconfigured PySpark 2.3.2",
         "dev_services": [
          "NOTEBOOK"
         ],
         "id": "0e5f9a41-c9c2-4d9a-a190-4e1b17a7782f",
         "name": "mlstudio-pyspark2.3.2-ubuntu16.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mlstudio-cp36:3.3.1.9",
         "tag": "3.3.1.9",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648867218685,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "notebook2.0 cpu base image",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54090",
         "name": "notebook2.0-mul-kernel-cpu-cp36",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-cpu-cp36:5.0.1-release-v2-20220505",
         "tag": "5.0.1-release-v2-20220505",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1628221753345,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "GPU algorithm development and training, preconfigured with the AI engine MindSpore-GPU",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "d7fb5355-9045-4deb-94c6-4033e1e62728",
         "name": "mindspore1.2.0-openmpi2.1.1-ubuntu18.04",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_2_0:mindspore_1.2.0-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tag": "mindspore_1.2.0-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1636963735672,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1628757809703,
         "description": "CPU operations research development, preconfigured with cylp, cbcpy, ortools, cplex(community).",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "b9933af0-3119-4045-a427-5e668327dafd",
         "name": "cylp0.91.4-cbcpy2.10-ortools9.0-cplex20.1.0-ubuntu18.04",
         "namespace": "atelier",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "size": 2550402546,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/or_1_0_0:or_1.0.0-py_3.7-ubuntu_18.04-x86_64-roma-20220812093355-e50493d",
         "tag": "or_1.0.0-py_3.7-ubuntu_18.04-x86_64-roma-20220812093355-e50493d",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1642836699554,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU algorithm development and training, including the MLStudio tool for graphical ML algorithm development, and preconfigured PySpark 2.4.5",
         "dev_services": [
          "NOTEBOOK"
         ],
         "id": "0b2d0728-4c01-11ec-994f-001a7dda7111",
         "name": "mlstudio-pyspark2.4.5-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mlstudio-cp37:5.0.1-mls-20230118153946",
         "tag": "5.0.1-mls-20230118153946",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648867218708,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1605759392404,
         "description": "GPU algorithm development and training, preconfigured with the AI engine MindSpore-GPU",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "89de30ec-6871-4f22-84af-be37ef28335d",
         "name": "mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_2_0:mindspore_1.2.0-py_3.7-cuda_10.1-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tag": "mindspore_1.2.0-py_3.7-cuda_10.1-ubuntu_18.04-x86_64-20221118143809-d65d817",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1648867218639,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "description",
         "dev_services": [
          "NOTEBOOK"
         ],
         "id": "88bd7bcd-0c91-45b2-ad0e-ef65553d19c5",
         "name": "dls-feature-engineering",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-dls-feature-engineering-cpu-py37:3.2.0109",
         "tag": "3.2.0109",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1623899358020,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "description",
         "dev_services": [
          "NOTEBOOK"
         ],
         "id": "1d1b1327-b243-425b-ad81-2689584c1acc",
         "name": "mls-feature-engineering",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-mls-feature-engineering-cpu-py37:3.2.0109",
         "tag": "3.2.0109",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1623899357995,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "MindSpore1.7.0 and MindQuantum0.6.0",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "6592fa02-a40a-4054-a05f-f22215e45ec1",
         "name": "mindquantum0.6.0-mindspore1.7.0-ubuntu18.04",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20220727174747-6a4cdd5",
         "tag": "mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20220727174747-6a4cdd5",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "create_at": 1628757853111,
         "description": "CPU and GPU algorithm development and training, preconfigured with AI engine ray for reinforcement learning.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "4233d6f9-c3b5-4cf2-9ee6-2ef565935d6d",
         "name": "rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04",
         "namespace": "rl-dev",
         "resource_categories": [
          "CPU",
          "GPU"
         ],
         "service_type": "TRAIN",
         "size": 4857883146,
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-rl-1.0.0-kernel-cp37:rl-v1220211203",
         "tag": "rl-v1220211203",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1642836699527,
         "workspace_id": "0"
        },
        {
         "arch": "aarch64",
         "description": "Ascend+ARM algorithm development and training. TensorFlow and MindSpore are preset in the AI engine.",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "59a6e9f5-93c0-44dd-85b0-82f390c5d53b",
         "name": "tensorflow1.15-mindspore1.7.0-cann5.1.0-euler2.8-aarch64",
         "resource_categories": [
          "CPU",
          "ASCEND"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-arm-ascend-cp37:5.0.1-c81-20220726",
         "tag": "5.0.1-c81-20220726",
         "tags": [],
         "type": "BUILD_IN",
         "update_at": 1640398185602,
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "9d63f4d1-dc09-4873-b669-3483cea777c0",
         "name": "mindspore1.7.0-ubuntu18.04-default",
         "resource_categories": [
          "CPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20220625205423-5a13f29",
         "tag": "mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20220625205423-5a13f29",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        },
        {
         "arch": "x86_64",
         "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine MindSpore1.7.0 and cuda10.1",
         "dev_services": [
          "NOTEBOOK",
          "SSH"
         ],
         "id": "e1a07296-22a8-4f05-8bc8-e936c8e54203",
         "name": "mindspore1.7.0-ubuntu18.04-default",
         "resource_categories": [
          "GPU"
         ],
         "service_type": "TRAIN",
         "status": "ACTIVE",
         "swr_path": "swr.myhuaweicloud.com/atelier/mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20220625205423-5a13f29",
         "tag": "mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20220625205423-5a13f29",
         "tags": [],
         "type": "BUILD_IN",
         "workspace_id": "0"
        }
       ],
       "pages": 1,
       "size": 200,
       "total": 39
      }

      Select the image required for creating a notebook instance based on the description and name parameters and record its ID. This section provides an example of using TensorFlow to create a notebook instance with an id of e1a07296-22a8-4f05-8bc8-e936c8e54100.

  3. Call the API for creating a notebook instance to create an instance.

    1. Request body:

      URI: POST https://{ma_endpoint}/v1/{project_id}/notebooks

      Request header:
      • X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...
      • Content-Type →application/json

      Request body:

      {
        "name" : "notebooks_test",
        "feature" : "NOTEBOOK",
        "workspace_id" : "0",
        "description" : "api-test",
        "flavor" : "modelarts.vm.cpu.2u",
        "image_id" : "e1a07296-22a8-4f05-8bc8-e936c8e54090",
        "volume" : {
          "category" : "efs",
          "ownership" : "managed",
          "capacity" : 50
        }
      }
      Set the following parameters based on site requirements:
      • ma_endpoint: ModelArts endpoint
      • project_id: user's project ID
      • X-auth-Token: token obtained in the previous step
      • flavor: flavor of the notebook instance
      • image_id: image ID of the notebook instance
    2. Status code 200 is returned. The response body is as follows:
      {
       "action_progress": [
        {
         "step": 4,
         "status": "WAITING",
         "description": "Initialize the notebook instance."
        },
        {
         "step": 3,
         "status": "WAITING",
         "description": "Configuring the network."
        },
        {
         "step": 2,
         "status": "WAITING",
         "description": "Prepare the compute resource."
        },
        {
         "step": 1,
         "status": "WAITING",
         "description": "Prepare the storage."
        }
       ],
       "create_at": 1687656452472,
       "description": "api-test",
       "endpoints": [],
       "feature": "NOTEBOOK",
       "flavor": "modelarts.vm.cpu.2u",
       "id": "936bea3e-d3df-435e-8b58-d817283284ae",
       "image": {
        "description": "",
        "id": "e1a07296-22a8-4f05-8bc8-e936c8e54090",
        "name": "notebook2.0-mul-kernel-cpu-cp36",
        "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-cpu-cp36:5.0.1-release-v2-20220505",
        "tag": "5.0.1-release-v2-20220505",
        "type": "BUILD_IN"
       },
       "lease": {
        "create_at": 1687656452470,
        "duration": 3600000,
        "enable": true,
        "type": "TIMING",
        "update_at": 1687656452470
       },
       "name": "notebooks_test",
       "status": "RUNNING",
       "tags": [],
       "token": "3452e0d5-15fe-a20d-18a2-010a574aeaaf",
       "update_at": 1687656452588,
       "user_id": "99250e439b33431081xxxxxxxxxxa885",
       "workspace_id": "0",
       "billing_items": []
      }

      You can view the notebook instance details in the response. If status is RUNNING, the notebook instance is successfully created.

  4. Call the API for querying details of a notebook instance to query the instance creation details based on the instance ID.
    1. Request body:

      URI: GET https://{ma_endpoint}/v1/{project_id}/notebooks/{id}

      Request header: X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...

      Set the bold parameters based on site requirements.

    2. Status code 200 is returned. The response body is as follows:
      {
       "create_at": 1687656452472,
       "data_volumes": [],
       "description": "api-test",
       "endpoints": [
        {
         "service": "NOTEBOOK",
         "uri": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab"
        }
       ],
       "feature": "NOTEBOOK",
       "flavor": "modelarts.vm.cpu.2u",
       "id": "936bea3e-d3df-435e-8b58-d817283284ae",
       "image": {
        "description": "",
        "id": "e1a07296-22a8-4f05-8bc8-e936c8e54090",
        "name": "notebook2.0-mul-kernel-cpu-cp36",
        "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-cpu-cp36:5.0.1-release-v2-20220505",
        "tag": "5.0.1-release-v2-20220505",
        "type": "BUILD_IN"
       },
       "lease": {
        "create_at": 1687656452470,
        "duration": 3627372,
        "enable": true,
        "type": "TIMING",
        "update_at": 1687656479842
       },
       "name": "notebooks_test",
       "status": "RUNNING",
       "tags": [],
       "token": "3452e0d5-15fe-a20d-18a2-010a574aeaaf",
       "update_at": 1687656479880,
       "url": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab",
       "user": {
        "domain": {
         "id": "878991804cdc4ba597xxxxxxxxxx9dd9",
         "name": "hwstaff_pub_CBUInfo_EI"
        },
        "id": "99250e439b33431081xxxxxxxxxxa885",
        "name": "xwx1128222"
       },
       "user_id": "99250e439b33431081xxxxxxxxxxa885",
       "volume": {
        "category": "EFS",
        "ownership": "MANAGED",
        "mount_path": "/home/ma-user/work/",
        "capacity": 50,
        "read_only": false
       },
       "workspace_id": "0",
       "billing_items": [
        "COMPUTE"
       ]
      }
  5. Call the API for prolonging a notebook instance to reset the usage duration of the instance.
    1. Request body:

      URI: PATCH https://{ma_endpoint}/v1/{project_id}notebooks/{id}/lease

      Request header:

      • X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...
      • Content-Type →application/json

      Request body:

      {
        "duration": 3600000,
        "type": "timing"
      }

      Set the following parameters based on site requirements:

      • duration: instance running duration, which is calculated based on the instance creation time. If the instance creation time plus the duration is greater than the current time, the system automatically stops the instance.
      • type: auto stop type. The default value is timing.
    2. Status code 200 is returned, indicating that labeling is successful. The response body is as follows:
      {
       "create_at": 1687656452470,
       "duration": 4657544,
       "enable": true,
       "type": "TIMING",
       "update_at": 1687657510014
      }
  6. Call the API for stopping a notebook instance to stop the instance that is running.
    1. Request body.

      URI: POSThttps://{ma_endpoint}//v1/{project_id}/notebooks/{id}/stop

      Request header: X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...

      Set the bold parameters based on site requirements.

    2. Status code 200 is returned. The response body is as follows:
      {
       "create_at": 1687656452472,
       "data_volumes": [],
       "description": "api-test",
       "endpoints": [
        {
         "service": "NOTEBOOK",
         "uri": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab"
        }
       ],
       "feature": "NOTEBOOK",
       "flavor": "modelarts.vm.cpu.2u",
       "id": "936bea3e-d3df-435e-8b58-d817283284ae",
       "image": {
        "description": "",
        "id": "e1a07296-22a8-4f05-8bc8-e936c8e54090",
        "name": "notebook2.0-mul-kernel-cpu-cp36",
        "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-cpu-cp36:5.0.1-release-v2-20220505",
        "tag": "5.0.1-release-v2-20220505",
        "type": "BUILD_IN"
       },
       "lease": {
        "create_at": 1687656452470,
        "duration": 6199814,
        "enable": true,
        "type": "TIMING",
        "update_at": 1687659052284
       },
       "name": "notebooks_test",
       "status": "STOPPING",
       "tags": [],
       "token": "3452e0d5-15fe-a20d-18a2-010a574aeaaf",
       "update_at": 1687656479880,
       "url": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab",
       "user": {
        "domain": {
         "id": "878991804cdc4ba597xxxxxxxxxx9dd9",
         "name": "hwstaff_test"
        },
        "id": "99250e439b33431081xxxxxxxxxxa885",
        "name": "test"
       },
       "user_id": "99250e439b33431081xxxxxxxxxxa885",
       "volume": {
        "category": "EFS",
        "ownership": "MANAGED",
        "mount_path": "/home/ma-user/work/",
        "capacity": 50,
        "read_only": false
       },
       "workspace_id": "0",
       "billing_items": []
      }
  7. Call the API for starting a notebook instance to restart the instance.
    1. Request body.

      URI: GET https://{ma_endpoint}/v1/{project_id}/notebooks/{id}/start

      Request header: X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...

      Set the bold parameters based on site requirements.

    2. Status code 200 is returned. The response body is as follows:
      {
       "create_at": 1687656452472,
       "data_volumes": [],
       "description": "api-test",
       "endpoints": [
        {
         "service": "NOTEBOOK",
         "uri": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab"
        }
       ],
       "feature": "NOTEBOOK",
       "flavor": "modelarts.vm.cpu.2u",
       "id": "936bea3e-d3df-435e-8b58-d817283284ae",
       "image": {
        "description": "",
        "id": "e1a07296-22a8-4f05-8bc8-e936c8e54090",
        "name": "notebook2.0-mul-kernel-cpu-cp36",
        "swr_path": "swr.myhuaweicloud.com/atelier/notebook2.0-mul-kernel-cpu-cp36:5.0.1-release-v2-20220505",
        "tag": "5.0.1-release-v2-20220505",
        "type": "BUILD_IN"
       },
       "lease": {
        "create_at": 1687656452470,
        "duration": 6540099,
        "enable": true,
        "type": "TIMING",
        "update_at": 1687659392569
       },
       "name": "notebooks_test",
       "status": "STARTING",
       "tags": [],
       "token": "6f773860-21d4-9fe8-75c8-a38ea13ebf08",
       "update_at": 1687659203630,
       "url": "https://authoring-modelarts.huaweicloud.com/936bea3e-d3df-435e-8b58-d817283284ae/lab",
       "user": {
        "domain": {
         "id": "878991804cdc4ba597xxxxxxxxxx9dd9",
         "name": "hwstaff_test"
        },
        "id": "99250e439b33431081xxxxxxxxxxa885",
        "name": "test"
       },
       "user_id": "99250e439b33431081xxxxxxxxxxa885",
       "volume": {
        "category": "EFS",
        "ownership": "MANAGED",
        "mount_path": "/home/ma-user/work/",
        "capacity": 50,
        "read_only": false
       },
       "workspace_id": "0",
       "billing_items": []
      }
  8. Call the API for deleting a notebook instance to delete the instance that is no longer needed.
    1. Request body:

      URI: DELETE https://{ma_endpoint}/v1/{project_id}/notebooks/{id}

      Request header:

      • X-auth-Token →MIIZmgYJKoZIhvcNAQcCoIIZizCCGYcCAQExDTALBglghkgBZQMEAgEwgXXXXXX...
      • Content-Type →application/json

      Set the bold parameters based on site requirements.

    2. Status code 200 is returned, indicating that the instance is successfully deleted.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback