Help Center/ ModelArts/ API Reference/ Training Management/ Obtaining the Preset AI Frameworks Supported by a Training Job
Updated on 2025-11-19 GMT+08:00

Obtaining the Preset AI Frameworks Supported by a Training Job

Function

This API is used to query the list of preset AI frameworks supported by the current system.

This API is used when you need to know the preset AI frameworks supported by the system. Before using this API, ensure that you have the required permissions. After the query, you will obtain the details of all preset AI frameworks supported by the system. If you do not have the required permission or the query fails, the API will return an error message.

Debugging

You can debug this API through automatic authentication in API Explorer or use the SDK sample code generated by API Explorer.

URI

GET /v2/{project_id}/training-job-engines

Table 1 Path Parameters

Parameter

Mandatory

Type

Description

project_id

Yes

String

Definition: Project ID. For details, see Obtaining a Project ID and Name.

Constraints: The value can contain 1 to 64 characters. Letters, digits, and hyphens (-) are allowed.

Range: N/A

Default Value: N/A

Request Parameters

None

Response Parameters

Status code: 200

Table 2 Response body parameters

Parameter

Type

Description

total

Integer

Definition: Total number of training job engine flavors.

Range: N/A

items

Array of items objects

Definition: Engine flavor parameter list.

Table 3 items

Parameter

Type

Description

engine_id

String

Definition: Engine flavor ID, for example, caffe-1.0.0-python2.7.

Range: N/A

engine_name

String

Definition: Engine flavor name, for example, Caffe.

Range: N/A

engine_version

String

Definition: Engine flavor version. Engines with the same name have multiple versions, for example, Caffe-1.0.0-python2.7 of Python 2.7.

Range: N/A

v1_compatible

Boolean

Definition: Specifies whether the v1 compatibility mode is used.

Range

  • true: v1 compatibility

  • false: v1 incompatibility

run_user

String

Definition: Default UID for the engine startup.

Range: N/A

image_info

image_info object

Definition: Engine information.

Table 4 image_info

Parameter

Type

Description

cpu_image_url

String

Definition: Image of the CPU flavor.

Range: N/A

gpu_image_url

String

Definition: Image with the matched GPU or Ascend flavor.

Range: N/A

image_version

String

Definition: Image version.

Range: N/A

Example Requests

The following shows how to query all public engine specifications of a training job in CN North-Beijing4 (only part of the specifications are displayed because there are too many engines).

GET https://endpoint/v2/{project_id}/training-job-engines

Example Responses

Status code: 200

ok

{
  "total" : 20,
  "items" : [ {
    "engine_id" : "caffe-1.0.0-python2.7",
    "engine_name" : "Caffe",
    "engine_version" : "caffe-1.0.0-python2.7",
    "v1_compatible" : true,
    "run_user" : "",
    "image_info" : {
      "cpu_image_url" : "modelarts-job-dev-image/caffe1-cpu-cp27:1.0.0",
      "gpu_image_url" : "modelarts-job-dev-image/caffe1-gpu-cuda8-cp27:1.0.0",
      "image_version" : "3.1.0"
    }
  }, {
    "engine_id" : "horovod-cp36-tf-1.16.2",
    "engine_name" : "Horovod",
    "engine_version" : "0.16.2-TF-1.13.1-python3.6",
    "v1_compatible" : true,
    "run_user" : "",
    "image_info" : {
      "cpu_image_url" : "modelarts-job-dev-image/tensorflow-gpu-cuda10-cp36-horovod0162:1.13.1",
      "gpu_image_url" : "modelarts-job-dev-image/tensorflow-gpu-cuda10-cp36-horovod0162:1.13.1",
      "image_version" : "3.2.1"
    }
  }, {
    "engine_id" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
    "engine_name" : "Horovod",
    "engine_version" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
    "v1_compatible" : false,
    "run_user" : "1102",
    "image_info" : {
      "cpu_image_url" : "aip/horovod_tensorflow:train",
      "gpu_image_url" : "aip/horovod_tensorflow:train",
      "image_version" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20210912152543-1e0838d"
    }
  }, "......", {
    "engine_id" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
    "engine_name" : "TensorFlow",
    "engine_version" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
    "v1_compatible" : false,
    "run_user" : "1102",
    "image_info" : {
      "cpu_image_url" : "aip/tensorflow_2_1:train",
      "gpu_image_url" : "aip/tensorflow_2_1:train",
      "image_version" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20210912152543-1e0838d"
    }
  }, {
    "engine_id" : "xgboost-sklearn-python3.6",
    "engine_name" : "XGBoost-Sklearn",
    "engine_version" : "XGBoost-0.80-Sklearn-0.18.1-python3.6",
    "v1_compatible" : true,
    "run_user" : "",
    "image_info" : {
      "cpu_image_url" : "modelarts-job-dev-image/python-train-py36:secure",
      "gpu_image_url" : "",
      "image_version" : "2.0.10-20211101113705"
    }
  } ]
}

Status Codes

Status Code

Description

200

ok

Error Codes

See Error Codes.