- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- DLI作业开发流程
- 准备工作
- 创建弹性资源池和队列
- 创建数据库和表
- 数据迁移与数据传输
- 配置DLI访问其他云服务的委托权限
- 使用DLI提交SQL作业
- 使用DLI提交Flink作业
- 使用DLI提交Spark作业
- 使用Notebook实例提交DLI作业
- 使用CES监控DLI服务
- 使用AOM监控DLI服务
- 使用CTS审计DLI服务
- 权限管理
- DLI常用管理操作
- 最佳实践
-
开发指南
- 使用客户端工具连接DLI
- SQL作业开发指南
- Flink作业开发指南
- Spark Jar作业开发指南
-
语法参考
-
Spark SQL语法参考
- Spark SQL常用配置项说明
- Spark SQL语法概览
- Spark开源命令支持说明
- 数据库相关
- 表相关
- 数据相关
- 导出查询结果
- 跨源连接相关
- 视图相关
- 查看计划
- 数据权限相关
- 数据类型
- 自定义函数
-
内置函数
-
日期函数
- 日期函数概览
- add_months
- current_date
- current_timestamp
- date_add
- dateadd
- date_sub
- date_format
- datediff
- datediff1
- datepart
- datetrunc
- day/dayofmonth
- from_unixtime
- from_utc_timestamp
- getdate
- hour
- isdate
- last_day
- lastday
- minute
- month
- months_between
- next_day
- quarter
- second
- to_char
- to_date
- to_date1
- to_utc_timestamp
- trunc
- unix_timestamp
- weekday
- weekofyear
- year
-
字符串函数
- 字符串函数概览
- ascii
- concat
- concat_ws
- char_matchcount
- encode
- find_in_set
- get_json_object
- instr
- instr1
- initcap
- keyvalue
- length
- lengthb
- levenshtein
- locate
- lower/lcase
- lpad
- ltrim
- parse_url
- printf
- regexp_count
- regexp_extract
- replace
- regexp_replace
- regexp_replace1
- regexp_instr
- regexp_substr
- repeat
- reverse
- rpad
- rtrim
- soundex
- space
- substr/substring
- substring_index
- split_part
- translate
- trim
- upper/ucase
- 数学函数
- 聚合函数
- 分析窗口函数
- 其他函数
-
日期函数
- SELECT
-
标示符
- aggregate_func
- alias
- attr_expr
- attr_expr_list
- attrs_value_set_expr
- boolean_expression
- class_name
- col
- col_comment
- col_name
- col_name_list
- condition
- condition_list
- cte_name
- data_type
- db_comment
- db_name
- else_result_expression
- file_format
- file_path
- function_name
- groupby_expression
- having_condition
- hdfs_path
- input_expression
- input_format_classname
- jar_path
- join_condition
- non_equi_join_condition
- number
- num_buckets
- output_format_classname
- partition_col_name
- partition_col_value
- partition_specs
- property_name
- property_value
- regex_expression
- result_expression
- row_format
- select_statement
- separator
- serde_name
- sql_containing_cte_name
- sub_query
- table_comment
- table_name
- table_properties
- table_reference
- view_name
- view_properties
- when_expression
- where_condition
- window_function
- 运算符
-
Flink SQL语法参考
- Flink Opensource SQL1.15语法参考
- Flink Opensource SQL1.12语法参考
- Flink Opensource SQL1.10语法参考
-
HetuEngine SQL语法参考
-
HetuEngine SQL语法
- 使用前必读
- 数据类型
-
DDL 语法
- CREATE SCHEMA
- CREATE TABLE
- CREATE TABLE AS
- CREATE TABLE LIKE
- CREATE VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER SCHEMA
- DROP SCHEMA
- DROP TABLE
- DROP VIEW
- TRUNCATE TABLE
- COMMENT
- VALUES
- SHOW语法使用概要
- SHOW SCHEMAS(DATABASES)
- SHOW TABLES
- SHOW TBLPROPERTIES TABLE|VIEW
- SHOW TABLE/PARTITION EXTENDED
- SHOW FUNCTIONS
- SHOW PARTITIONS
- SHOW COLUMNS
- SHOW CREATE TABLE
- SHOW VIEWS
- SHOW CREATE VIEW
- DML 语法
- DQL 语法
- 辅助命令语法
- 预留关键字
- SQL函数和操作符
- 数据类型隐式转换
- 附录
-
HetuEngine SQL语法
- Hudi SQL语法参考
- Delta SQL语法参考
-
Spark SQL语法参考
-
API参考
- API使用前必读
- API概览
- 如何调用API
- API快速入门
- 权限相关API
- 全局变量相关API
- 资源标签相关API
- 增强型跨源连接相关API
- 跨源认证相关API
- 弹性资源池相关API
- 队列相关API(推荐)
- SQL作业相关API
- SQL模板相关API
- Flink作业相关API
- Flink作业模板相关API
- Flink作业管理相关API
- Spark作业相关API
- Spark作业模板相关API
- 权限策略和授权项
- 历史API
- 公共参数
- SDK参考
- 场景代码示例
-
常见问题
- DLI产品咨询类
- DLI弹性资源池和队列类
-
DLI数据库和表类
- 为什么在DLI控制台中查询不到表?
- OBS表压缩率较高怎么办?
- 字符码不一致导致数据乱码怎么办?
- 删除表后再重新创建同名的表,需要对操作该表的用户和项目重新赋权吗?
- DLI分区内表导入的文件不包含分区列的数据,导致数据导入完成后查询表数据失败怎么办?
- 创建OBS外表,由于OBS文件中的某字段存在换行符导致表字段数据错误怎么办?
- join表时没有添加on条件,造成笛卡尔积查询,导致队列资源爆满,作业运行失败怎么办?
- 手动在OBS表的分区目录下添加了数据,但是无法查询到数据怎么办?
- 为什么insert overwrite覆盖分区表数据的时候,覆盖了全量数据?
- 跨源连接RDS表中create_date字段类型是datetime,为什么DLI中查出来的是时间戳呢?
- SQL作业执行完成后,修改表名导致datasize不正确怎么办?
- 从DLI导入数据到OBS,数据量不一致怎么办?
-
增强型跨源连接类
- 增强型跨源连接绑定队列失败怎么办?
- DLI增强型跨源连接DWS失败怎么办?
- 创建跨源成功但测试网络连通性失败怎么办?
- 怎样配置DLI队列与数据源的网络连通?
- 为什么DLI增强型跨源连接要创建对等连接?
- DLI创建跨源连接,绑定队列一直在创建中怎么办?
- 新建跨源连接,显示已激活,但使用时提示communication link failure错误怎么办?
- 跨源访问MRS HBase,连接超时,日志未打印错误怎么办?
- DLI跨源连接报错找不到子网怎么办?
- 跨源RDS表,执行insert overwrite提示Incorrect string value错误怎么办?
- 创建RDS跨源表提示空指针错误怎么办?
- 对跨源DWS表执行insert overwrite操作,报错:org.postgresql.util.PSQLException: ERROR: tuple concurrently updated
- 通过跨源表向CloudTable Hbase表导入数据,executor报错:RegionTooBusyException
- 通过DLI跨源写DWS表,非空字段出现空值异常怎么办?
- 更新跨源目的端源表后,未同时更新对应跨源表,导致insert作业失败怎么办?
- RDS表有自增主键时怎样在DLI插入数据?
-
SQL作业类
- SQL作业开发类
-
SQL作业运维类
- 用户导表到OBS报“path obs://xxx already exists”错误
- 对两个表进行join操作时,提示:SQL_ANALYSIS_ERROR: Reference 't.id' is ambiguous, could be: t.id, t.id.;
- 执行查询语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
- 执行查询语句报错:There should be at least one partition pruning predicate on partitioned table XX.YYY
- LOAD数据到OBS外表报错:IllegalArgumentException: Buffer size too small. size
- SQL作业运行报错:DLI.0002 FileNotFoundException
- 用户通过CTAS创建hive表报schema解析异常错误
- 在DataArts Studio上运行DLI SQL脚本,执行结果报org.apache.hadoop.fs.obs.OBSIOException错误
- 使用CDM迁移数据到DLI,迁移作业日志上报UQUERY_CONNECTOR_0001:Invoke DLI service api failed错误
- SQL作业访问报错:File not Found
- SQL作业访问报错:DLI.0003: AccessControlException XXX
- SQL作业访问外表报错:DLI.0001: org.apache.hadoop.security.AccessControlException: verifyBucketExists on {{桶名}}: status [403]
- 执行SQL语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
-
Flink作业类
- Flink作业咨询类
-
Flink SQL作业类
- 怎样将OBS表映射为DLI的分区表?
- Flink SQL作业Kafka分区数增加或减少,怎样不停止Flink作业实现动态感知?
- 在Flink SQL作业中创建表使用EL表达式,作业运行提示DLI.0005错误怎么办?
- Flink作业输出流写入数据到OBS,通过该OBS文件路径创建的DLI表查询无数据
- Flink SQL作业运行失败,日志中有connect to DIS failed java.lang.IllegalArgumentException: Access key cannot be null错误
- Flink SQL作业消费Kafka后sink到es集群,作业执行成功,但未写入数据
- Flink Opensource SQL如何解析复杂嵌套 JSON?
- Flink Opensource SQL从RDS数据库读取的时间和RDS数据库存储的时间为什么会不一致?
- Flink Opensource SQL Elasticsearch结果表failure-handler参数填写retry_rejected导致提交失败
- Kafka Sink配置发送失败重试机制
- 如何在一个Flink作业中将数据写入到不同的Elasticsearch集群中?
- 作业语义检验时提示DIS通道不存在怎么处理?
- Flink jobmanager日志一直报Timeout expired while fetching topic metadata怎么办?
- Flink Jar作业类
- Flink作业性能调优类
-
Spark作业相类
- Spark作业开发类
-
Spark作业运维类
- 运行Spark作业报java.lang.AbstractMethodError
- Spark作业访问OBS数据时报ResponseCode: 403和ResponseStatus: Forbidden错误
- 有访问OBS对应的桶的权限,但是Spark作业访问时报错 verifyBucketExists on XXXX: status [403]
- Spark作业运行大批量数据时上报作业运行超时异常错误
- 使用Spark作业访问sftp中的文件,作业运行失败,日志显示访问目录异常
- 执行作业的用户数据库和表权限不足导致作业运行失败
- 为什么Spark3.x的作业日志中打印找不到global_temp数据库
- 在使用Spark2.3.x访问元数据时,DataSource语法创建avro类型的OBS表创建失败
- DLI资源配额类
- DLI权限管理类
- DLI API类
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
创建Spark作业
Spark作业编辑页面支持执行Spark作业,为用户提供全托管式的Spark计算服务。
在总览页面,单击Spark作业右上角的“创建作业”,或在Spark作业管理页面,单击右上角的“创建作业”,均可进入Spark作业编辑页面。
进入Spark作业编辑页面,页面会提示系统将创建DLI临时数据桶。该桶用于存储使用DLI服务产生的临时数据,例如:作业日志、作业结果等。如果不创建该桶,将无法查看作业日志。可以通过配置生命周期规则实现定时删除OBS桶中的对象或者定时转换对象的存储类别。桶名称为系统默认。
如果不需要创建DLI临时数据桶,并且希望不再收到该提示,可以勾选“下次不再提示”并单击“取消”。
前提条件
- 请先将所要依赖的程序包通过“数据管理>程序包管理”页面上传至对应的OBS桶中。具体操作请参考创建DLI程序包。
- 创建Spark作业,访问其他外部数据源时,如访问OpenTSDB、HBase、Kafka、DWS、RDS、CSS、CloudTable、DCS Redis、DDS等,需要先创建跨源连接,打通作业运行队列到外部数据源之间的网络。
- 当前Spark作业支持访问的外部数据源详情请参考DLI常用跨源分析开发方式。
- 创建跨源连接操作请参见配置DLI与数据源网络连通(增强型跨源连接)。
创建完跨源连接后,可以通过“资源管理 > 队列管理”页面,单击“操作”列“更多”中的“测试地址连通性”,验证队列到外部数据源之间的网络连通是否正常。详细操作可以参考测试地址连通性。
操作步骤
- 在DLI管理控制台的左侧导航栏中,单击“作业管理”>“Spark作业”,进入“Spark作业”页面。
单击右上角的“创建作业”,在Spark作业编辑窗口,可以选择使用“表单模式”或者“API模式”进行参数设置。
以下以“表单模式”页面进行说明,“API模式”即采用API接口模式设置参数及参数值,具体请参考《数据湖探索API参考》。
- 选择运行队列。
- 选择Spark版本。在下拉列表中选择支持的Spark版本,推荐使用最新版本。
说明:
不建议长期混用不同版本的Spark/Flink引擎。
- 长期混用不同版本的Spark/Flink引擎会导致代码在新旧版本之间不兼容,影响作业的执行效率。
- 当作业依赖于特定版本的库或组件,长期混用不同版本的Spark/Flink引擎可能会导致作业因依赖冲突而执行失败。
- 作业配置。
参考表1配置作业参数。
图1 Spark作业配置表1 作业配置参数说明 参数名称
参数描述
作业名称(--name)
设置作业名称。
应用程序
选择需要执行的程序包。包括“.jar”和“.py”两种类型。
Jar包的管理方式:
- 上传OBS管理程序包:提前将对应的jar包上传至OBS桶中。并在此处选择对应的OBS路径。
- 上传DLI管理程序包:提前将对应的jar包上传至OBS桶中,并在DLI管理控制台的“数据管理>程序包管理”中创建程序包,具体操作请参考创建DLI程序包。
Spark3.3.x及以上版本只能选择OBS路径下的程序包。
主类(--class)
输入主类名称。当应用程序类型为“.jar”时,主类名称不能为空。
应用程序参数
用户自定义参数,多个参数请以Enter键分隔。
应用程序参数支持全局变量替换。例如,在“全局配置”>“全局变量”中新增全局变量key为batch_num,可以使用{{batch_num}},在提交作业之后进行变量替换。
Spark参数(--conf)
以“key=value”的形式设置提交Spark作业的属性,多个参数以Enter键分隔。
Spark参数value支持全局变量替换。例如,在“全局配置”>“全局变量”中新增全局变量key为custom_class,可以使用"spark.sql.catalog"={{custom_class}},在提交作业之后进行变量替换。
作业特性
“所属队列”选择CCE队列时,设置该参数。表示用户作业使用的Spark镜像类型,具体说明如下:
- 基础型:DLI提供的基础镜像,运行非AI相关作业时选择“基础型”。
- 自定义镜像:自定义的Spark镜像,需要选择“容器镜像服务”中设置的镜像名称及版本。
依赖jar包(--jars)
运行spark作业依赖的jars。可以输入jar包名称,也可以输入对应jar包文件的OBS路径,格式为:obs://桶名/文件夹路径名/包名。
依赖python文件(--py-files)
运行spark作业依赖的py-files。可以输入Python文件名称,也可以输入Python文件对应的OBS路径,格式为:obs://桶名/文件夹路径名/文件名。
其他依赖文件(--files)
运行spark作业依赖的其他files。可以输入依赖文件名称,也可以输入对应的OBS路径,格式为:obs://桶名/文件夹路径名/文件名。
依赖分组
在创建程序包时,如果选择了分组,在此处选择对应的分组,则可以同时选中该分组中的所有程序包和文件。创建程序包操作请参考创建DLI程序包。
访问元数据
是否通过Spark作业访问元数据。具体请参考《数据湖探索开发指南》
是否重试
作业失败后是否进行重试。
选择“是”需要配置以下参数:
“最大重试次数”:设置作业失败重试次数,最大值为“100”。
高级配置
表2 Spark参数(--conf)配置跨源作业的依赖模块说明 数据源类型
样例
CSS
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*
DWS
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/dws/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/dws/*
HBase
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/hbase/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/hbase/*
OpenTSDB
park.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/opentsdb/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/opentsdb/*
RDS
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/rds/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/rds/*
Redis
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
Mongo
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/mongo/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/mongo/*
图2 创建Spark作业-高级配置 - 高级包括以下两项参数:
- 选择依赖资源:具体参数请参考表3。
- 计算资源规格:具体参数请参考表4。
说明:
Spark资源并行度由Executor数量和Executor CPU核数共同决定。
任务可并行执行的最大Task数量=Executor个数 * Executor CPU核数。
您可以根据购买的队列资源合理规划计算资源规格。
需要注意的是,Spark任务执行需要driver、executor等多个角色共同调度完成,因此“Executor个数*Executor CPU核数”要小于队列的计算资源CU数,避免其他Spark任务角色无法启动。更多Spark任务角色的相关信息请参考Spark官方。
Spark作业参数计算公式:
- CU数量=实际CU数量=max{(driver CPU核数+Executor个数*Executor CPU核数),[(driver CPU内存数+Executor个数*Executor内存)/4]}
- 内存数=driver内存+(Executor个数*Executor内存)
表3 选择依赖资源参数说明 参数名称
参数描述
modules
如果选择Spark版本为3.1.1时,无需选择Module模块, 需在Spark参数(--conf)配置跨源作业的依赖模块。
DLI系统提供的用于执行跨源作业的依赖模块访问各个不同的服务,选择不同的模块:- CloudTable/MRS HBase: sys.datasource.hbase
- DDS:sys.datasource.mongo
- CloudTable/MRS OpenTSDB: sys.datasource.opentsdb
- DWS: sys.datasource.dws
- RDS MySQL: sys.datasource.rds
- RDS PostGre: sys.datasource.rds
- DCS: sys.datasource.redis
- CSS: sys.datasource.css
DLI内部相关模块:
- sys.res.dli-v2
- sys.res.dli
- sys.datasource.dli-inner-table
资源包
运行spark作业依赖的jar包。
表4 计算资源规格参数说明 参数名称
参数描述
资源规格
下拉选择所需的资源规格。系统提供3种资源规格供您选择。
资源规格包含以下参数:
- Executor内存
- Executor CPU核数
- Executor个数
- driver CPU核数
- driver内存
最终配置结果以修改后数据为准。
Executor内存
在所选资源规格基础上自定义Executor内存规格。
代表每个Executor的内存。通常建议Executor CPU核数:Executor内存=1:4。
Executor CPU核数
用于设置Spark作业申请的每个Executor的CPU核数,决定每个Executor并行执行Task的能力。
Executor个数
用于设置Spark作业申请的Executor的数量。
driver CPU核数
用于设置driver CPU核数。
driver内存
用于设置driver内存大小,通常建议即driver CPU核数:driver内存=1:4。
如果选择Spark版本为3.3.1时,支持在Spark参数(--conf)配置计算资源规格参数, 且conf的配置优先级高于高级配置指定的值。
参数对应关系请参考表5。
说明:
在Spark参数(--conf)配置计算资源规格参数时,可以配置单位 M/G/K,不配置时候默认单位为byte。
表5 控制台计算资源规格参数与Spark参数(--conf)配置计算资源规格参数的对应关系 控制台参数名称
Spark参数(--conf)配置项参数名称
说明
约束与限制
Executor内存
完整的Executor内存=spark.executor.memory + spark.executor.memoryOverhead
spark.executor.memory
executor内存,可配置。
-
spark.executor.memoryOverhead
Spark应用程序中每个执行器(executor)的堆外内存量。该参数不可配置:
spark.executor.memoryOverhead=spark.executor.memory * spark.executor.memoryOverheadFactor
最小值为384M,
即当spark.executor.memory * spark.executor.memoryOverheadFactor的值小于384M时系统自动配置为384M。
spark.executor.memoryOverheadFactor
该参数定义了堆外内存分配量与堆内内存分配量之比,spark jar时默认0.1,spark python 默认0.4 可配置
spark.executor.memoryOverheadFactor优先级高于spark.kubernetes.memoryOverheadFactor
Executor CPU核数
spark.executor.cores
对应executor核数 可配置
-
Executor个数
spark.executor.instances
对应executor个数 可配置
-
driver CPU核数
spark.driver.cores
对应driver核数 可配置
-
driver内存
完整的driver内存=spark.driver.memory + spark.edriver.memoryOverhead
spark.driver.memory
对应driver内存 可配置
-
spark.driver.memoryOverhead
Spark应用程序中每个driver的堆外内存量。
该参数不可配置:
spark.driver.memoryOverhead=
spark.driver.memory * spark.driver.memoryOverheadFactor
最小值为384M,即当spark.driver.memory * spark.driver.memoryOverheadFactor 的值小于384M时系统自动配置为384M。
spark.driver.memoryOverheadFactor
该参数定义了堆外内存分配量与堆内内存分配量之比,spark jar时默认0.1,spark python 默认0.4 可配置
spark.driver.memoryOverheadFactor优先级高于spark.kubernetes.memoryOverheadFactor
-
spark.kubernetes.memoryOverheadFactor
用于设置在分配给Spark Executor的内存之外分配的内存量。spark jar时默认0.1,spark python 默认0.4 可配置
spark.executor.memoryOverheadFactor和spark.driver.memoryOverheadFactor优先级高于spark.kubernetes.memoryOverheadFactor。
Spark3.3.及以上版本增加了对作业的计算资源规格的约束限制。详细信息请参考表6。
注意:
若计算资源规格配置值设置得过高,超出了集群或项目的资源分配能力,作业可能会因资源申请失败导致运行错误。
- 完成作业的参数配置后,单击Spark作业编辑页面右上方“执行”,提交作业。