网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务
本文导读

窗口

更新时间:2024-06-24 GMT+08:00
分享

GROUP WINDOW

语法说明

Group Window定义在GROUP BY里,每个分组只输出一条记录,包括以下几种:

  • 分组函数
    表1 分组函数表

    分组窗口函数

    说明

    TUMBLE(time_attr, interval)

    定义一个滚动窗口。滚动窗口把行分配到有固定持续时间( interval )的不重叠的连续窗口。比如,5 分钟的滚动窗口以 5 分钟为间隔对行进行分组。滚动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。

    HOP(time_attr, interval, interval)

    定义一个跳跃的时间窗口(在 Table API 中称为滑动窗口)。滑动窗口有一个固定的持续时间( 第二个 interval 参数 )以及一个滑动的间隔(第一个 interval 参数 )。若滑动间隔小于窗口的持续时间,滑动窗口则会出现重叠;因此,行将会被分配到多个窗口中。比如,一个大小为 15 分钟的滑动窗口,其滑动间隔为 5 分钟,将会把每一行数据分配到 3 个 15 分钟的窗口中。滑动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。

    SESSION(time_attr, interval)

    定义一个会话时间窗口。会话时间窗口没有一个固定的持续时间,但是它们的边界会根据 interval 所定义的不活跃时间所确定;即一个会话时间窗口在定义的间隔时间内没有事件出现,该窗口会被关闭。例如时间窗口的间隔时间是 30 分钟,当其不活跃的时间达到30分钟后,若观测到新的记录,则会启动一个新的会话时间窗口(否则该行数据会被添加到当前的窗口),且若在 30 分钟内没有观测到新纪录,这个窗口将会被关闭。会话时间窗口可以使用事件时间(批处理、流处理)或处理时间(流处理)。

    注意:

    在流处理表中的 SQL 查询中,分组窗口函数的 time_attr 参数必须引用一个合法的时间属性,且该属性需要指定行的处理时间或事件时间。

    • time_attr设置为event-time时参数类型为timestamp(3)类型。
    • time_attr设置为processing-time时无需指定类型。

    对于批处理的 SQL 查询,分组窗口函数的 time_attr 参数必须是一个timestamp类型的属性。

  • 窗口辅助函数
    可以使用以下辅助函数选择组窗口的开始和结束时间戳以及时间属性
    表2 窗口辅助函数表

    辅助函数

    说明

    TUMBLE_START(time_attr, interval)

    HOP_START(time_attr, interval, interval)

    SESSION_START(time_attr, interval)

    返回相对应的滚动、滑动和会话窗口范围内的下界时间戳。

    TUMBLE_END(time_attr, interval)

    HOP_END(time_attr, interval, interval)

    SESSION_END(time_attr, interval)

    返回相对应的滚动、滑动和会话窗口范围以外的上界时间戳。

    注意: 范围以外的上界时间戳不可以 在随后基于时间的操作中,作为行时间属性使用,比如基于时间窗口的join以及分组窗口或分组窗口上的聚合。

    TUMBLE_ROWTIME(time_attr, interval)

    HOP_ROWTIME(time_attr, interval, interval)

    SESSION_ROWTIME(time_attr, interval)

    返回的是一个可用于后续需要基于时间的操作的时间属性(rowtime attribute),比如基于时间窗口的join以及 分组窗口或分组窗口上的聚合。

    TUMBLE_PROCTIME(time_attr, interval)

    HOP_PROCTIME(time_attr, interval, interval)

    SESSION_PROCTIME(time_attr, interval)

    返回一个可用于后续需要基于时间的操作的 处理时间参数,比如基于时间窗口的join以及分组窗口或分组窗口上的聚合.

    注意:辅助函数必须使用与GROUP BY 子句中的分组窗口函数完全相同的参数来调用.

示例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// 每天计算SUM(金额)(事件时间)。
insert into temp SELECT name,
    TUMBLE_START(ts, INTERVAL '1' DAY) as wStart,
    SUM(amount)
    FROM Orders
    GROUP BY TUMBLE(ts, INTERVAL '1' DAY), name;

// 每天计算SUM(金额)(处理时间)。
insert into temp SELECT name, 
    SUM(amount) 
    FROM Orders 
    GROUP BY TUMBLE(proctime, INTERVAL '1' DAY), name;

// 每个小时计算事件时间中最近24小时的SUM(数量)。
insert into temp SELECT product, 
    SUM(amount) 
    FROM Orders 
    GROUP BY HOP(ts, INTERVAL '1' HOUR, INTERVAL '1' DAY), product;

// 计算每个会话的SUM(数量),间隔12小时的不活动间隙(事件时间)。
insert into temp SELECT name, 
    SESSION_START(ts, INTERVAL '12' HOUR) AS sStart,
    SESSION_END(ts, INTERVAL '12' HOUR) AS sEnd,
    SUM(amount)
    FROM Orders
    GROUP BY SESSION(ts, INTERVAL '12' HOUR), name;

TUMBLE WINDOW扩展

功能描述

DLI TUMBLE函数功能增强主要包括以下功能:
  • TUMBLE窗口周期性触发,控制延迟

    TUMBLE窗口结束之前,可以根据设置的触发频率周期性地触发窗口,输出从窗口开始时间到当前周期时间窗口内的计算结果值,但不影响最终窗口输出值,从而在窗口结束前的每个周期都可以看到最新的结果。

  • 提高数据的精确性

    在窗口结束后,允许设置延迟时间。根据设置的延迟时间,每到达一个迟到数据,则更新窗口的输出结果

注意事项

  • 若使用insert语句将结果写入sink中,则sink需要支持upsert模式,所以结果表需要支持upsert操作,且定义主键。
  • 延迟时间设置仅用于事件时间,在处理时间中不生效。
  • 辅助函数必须使用与 GROUP BY 子句中的分组窗口函数完全相同的参数来调用。
  • 若使用事件时间,则需要使用watermark标识,代码如下(其中order_time被标识为事件时间列,watermark时间设置为3秒):
    CREATE TABLE orders (
      order_id string,
      order_channel string,
      order_time timestamp(3),
      pay_amount double,
      real_pay double,
      pay_time string,
      user_id string,
      user_name string,
      area_id string,
      watermark for order_time as order_time - INTERVAL '3' SECOND
    ) WITH (
      'connector' = 'kafka',
      'topic' = '<yourTopic>',
      'properties.bootstrap.servers' = '<yourKafka>:<port>',
      'properties.group.id' = '<yourGroupId>',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'json'
    );
  • 若使用处理时间,则需要使用计算列设置,其代码如下(其中proc即为处理时间列):
    CREATE TABLE orders (
      order_id string,
      order_channel string,
      order_time timestamp(3),
      pay_amount double,
      real_pay double,
      pay_time string,
      user_id string,
      user_name string,
      area_id string,
      proc as proctime()
    ) WITH (
      'connector' = 'kafka',
      'topic' = '<yourTopic>',
      'properties.bootstrap.servers' = '<yourKafka>:<port>',
      'properties.group.id' = '<yourGroupId>',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'json'
    );

语法格式

TUMBLE(time_attr, window_interval, period_interval, lateness_interval)

语法示例

例如当前time_attr属性列为:testtime,窗口时间间隔为10秒,设置延迟时间为10秒语法示例为:
TUMBLE(testtime, INTERVAL '10' SECOND, INTERVAL '10' SECOND, INTERVAL '10' SECOND)

参数说明

表3 参数说明

参数

说明

参数格式

time_attr

表示相应的事件时间或者处理时间属性列。

  • time_attr设置为event-time时参数类型为timestamp(3)类型。
  • time_attr设置为processing-time时无需指定类型。

-

window_interval

表示窗口的持续时长。

  • 格式1:INTERVAL '10' SECOND

    表示窗口时间间隔为10秒,请根据实际情况修改该时间值。

  • 格式2:INTERVAL '10' MINUTE

    表示窗口时间间隔为10分钟,请根据实际情况修改该时间值。

  • 格式3:INTERVAL '10' DAY

    表示窗口时间间隔为10天,请根据实际情况修改该时间值。

period_interval

表示在窗口范围内周期性触发的频率,即在窗口结束前,从窗口开启开始,每隔period_interval时长更新一次输出结果。若没有设置,则默认没有使用周期触发策略。

lateness_interval

表示窗口结束后延迟lateness_interval时长,继续统计在窗口结束后延迟时间内到达的属于该窗口的数据,而且在延迟时间内到达的每个数据都会更新输出结果。

说明:

当时间窗口为处理时间时,无论lateness_interval为何值,都不会有效果。

说明:
period_interval和lateness_interval不可为负数。
  • 当period_interval为0时,表示没有使用窗口的周期触发策略;
  • 当lateness_interval为0时,表示没有使用窗口结束后的延迟策略;
  • 当二者都没有填写时,默认两种策略都没有配置,仅使用普通的TUMBLE窗口。
  • 若仅需使用延迟时间策略,则需要将上述period_interval格式中的'10'设置为 '0'。

辅助函数

表4 辅助函数

辅助函数

说明

TUMBLE_START(time_attr, window_interval, period_interval, lateness_interval)

返回相对应的滚动窗口范围内的下界时间戳。

TUMBLE_END(time_attr, window_interval, period_interval, lateness_interval)

返回相对应的滚动窗口范围以外的上界时间戳。

示例

1. 根据订单信息使用kafka作为数据源表,JDBC作为数据结果表统计用户在30秒内的订单数量,并根据窗口的订单id和窗口开启时间作为主键,将结果实时统计到JDBC中:

  1. 根据MySQL和kafka所在的虚拟私有云和子网创建相应的跨源,并绑定所要使用的队列。然后设置安全组,入向规则,使其对当前将要使用的队列放开,并根据MySQL和kafka的地址测试队列连通性。若能连通,则表示跨源已经绑定成功;否则表示未成功。
  2. 在MySQL的flink数据库下创建表order_count,创建语句如下:

    CREATE TABLE `flink`.`order_count` (
    	`user_id` VARCHAR(32) NOT NULL,
    	`window_start` TIMESTAMP NOT NULL,
    	`window_end` TIMESTAMP NULL,
    	`total_num` BIGINT UNSIGNED NULL,
    	PRIMARY KEY (`user_id`, `window_start`)
    )	ENGINE = InnoDB
    	DEFAULT CHARACTER SET = utf8mb4
    	COLLATE = utf8mb4_general_ci;

  3. 创建flink opensource sql作业,并提交运行作业(这里设置窗口的大小为30秒,触发周期为10秒,延迟时间设置为5秒,即窗口结束前若结果有更新,则每隔十秒输出一次中间结果。在watermark到达使得窗口结束后,事件时间在watermark5秒内的数据仍然会被处理,并统计到当前所属窗口;若在5秒以外,则该数据会被丢弃):

    CREATE TABLE orders (
      order_id string,
      order_channel string,
      order_time timestamp(3),
      pay_amount double,
      real_pay double,
      pay_time string,
      user_id string,
      user_name string,
      area_id string,
      watermark for order_time as order_time - INTERVAL '3' SECOND
    ) WITH (
      'connector' = 'kafka',
      'topic' = '<yourTopic>',
      'properties.bootstrap.servers' = '<yourKafka>:<port>',
      'properties.group.id' = '<yourGroupId>',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'json'
    );
    
    CREATE TABLE jdbcSink (
      user_id string,
      window_start timestamp(3),
      window_end timestamp(3),
      total_num BIGINT,
      primary key (user_id, window_start) not enforced
    ) WITH (
      'connector' = 'jdbc',
      'url' = 'jdbc:mysql://<yourMySQL>:3306/flink',
      'table-name' = 'order_count',
      'username' = '<yourUserName>',
      'password' = '<yourPassword>',
      'sink.buffer-flush.max-rows' = '1'
    );
    
    insert into jdbcSink select 
        order_id,
        TUMBLE_START(order_time, INTERVAL '30' SECOND, INTERVAL '10' SECOND, INTERVAL '5' SECOND),
        TUMBLE_END(order_time, INTERVAL '30' SECOND, INTERVAL '10' SECOND, INTERVAL '5' SECOND),
        COUNT(*) from orders
        GROUP BY user_id, TUMBLE(order_time, INTERVAL '30' SECOND, INTERVAL '10' SECOND, INTERVAL '5' SECOND);

  4. 向kafka中插入数据(这里假设同一个用户在不同时间下的订单,且因为某种原因导致10:00:13的订单数据较晚到达):

    {"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
    
    {"order_id":"202103241000000002", "order_channel":"webShop", "order_time":"2021-03-24 10:00:20", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
    
    {"order_id":"202103241000000003", "order_channel":"webShop", "order_time":"2021-03-24 10:00:33", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
    
    {"order_id":"202103241000000004", "order_channel":"webShop", "order_time":"2021-03-24 10:00:13", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}

  5. 在MySQL中使用下述语句查看输出结果,,输出结果如下(因无法展示周期性输出结果,所以这里展示的是最终结果):

    select * from order_count
    user_id      window_start         window_end        total_num
    0001      2021-03-24 10:00:00  2021-03-24 10:00:30    3
    0001      2021-03-24 10:00:30  2021-03-24 10:01:00    1

OVER WINDOW

Over Window与Group Window区别在于Over window每一行都会输出一条记录。

语法格式

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
SELECT agg1(attr1) OVER (
  [PARTITION BY partition_name]
  ORDER BY proctime|rowtime 
  ROWS  
 BETWEEN (UNBOUNDED|rowCOUNT) PRECEDING AND CURRENT ROW FROM TABLENAME

SELECT agg1(attr1) OVER (
  [PARTITION BY partition_name]
  ORDER BY proctime|rowtime 
  RANGE  
  BETWEEN (UNBOUNDED|timeInterval) PRECEDING AND CURRENT ROW FROM TABLENAME

语法说明

表5 参数说明

参数

参数说明

PARTITION BY

指定分组的主键,每个分组各自进行计算。

ORDER BY

指定数据按processing time或event time作为时间戳。

ROWS

个数窗口。

RANGE

时间窗口。

注意事项

  • 所有的聚合必须定义到同一个窗口中,即相同的分区、排序和区间。
  • 当前仅支持 PRECEDING (无界或有界) 到 CURRENT ROW 范围内的窗口、FOLLOWING 所描述的区间并未支持。
  • ORDER BY 必须指定于单个的时间属性。

示例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
// 计算从规则启动到目前为止的计数及总和(in proctime)
insert into temp SELECT name,
    count(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as cnt1,
    sum(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as cnt2
    FROM Orders;
  
// 计算最近四条记录的计数及总和(in proctime)
insert into temp SELECT name,
    count(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) as cnt1,
    sum(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) as cnt2
    FROM Orders;

// 计算最近60s的计数及总和(in eventtime),基于事件时间处理,事件时间为Orders中的timeattr字段
insert into temp SELECT name,
    count(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60' SECOND PRECEDING AND CURRENT ROW) as cnt1,
    sum(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60' SECOND PRECEDING AND CURRENT ROW) as cnt2
    FROM Orders;
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容