- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- DLI作业开发流程
- 准备工作
- 创建弹性资源池和队列
- 创建数据库和表
- 数据迁移与数据传输
- 配置DLI访问其他云服务的委托权限
- 使用DLI提交SQL作业
- 使用DLI提交Flink作业
- 使用DLI提交Spark作业
- 使用Notebook实例提交DLI作业
- 使用CES监控DLI服务
- 使用AOM监控DLI服务
- 使用CTS审计DLI服务
- 权限管理
- DLI常用管理操作
- 最佳实践
-
开发指南
- 使用客户端工具连接DLI
- SQL作业开发指南
- Flink作业开发指南
- Spark Jar作业开发指南
-
语法参考
-
Spark SQL语法参考
- Spark SQL常用配置项说明
- Spark SQL语法概览
- Spark开源命令支持说明
- 数据库相关
- 表相关
- 数据相关
- 导出查询结果
- 跨源连接相关
- 视图相关
- 查看计划
- 数据权限相关
- 数据类型
- 自定义函数
-
内置函数
-
日期函数
- 日期函数概览
- add_months
- current_date
- current_timestamp
- date_add
- dateadd
- date_sub
- date_format
- datediff
- datediff1
- datepart
- datetrunc
- day/dayofmonth
- from_unixtime
- from_utc_timestamp
- getdate
- hour
- isdate
- last_day
- lastday
- minute
- month
- months_between
- next_day
- quarter
- second
- to_char
- to_date
- to_date1
- to_utc_timestamp
- trunc
- unix_timestamp
- weekday
- weekofyear
- year
-
字符串函数
- 字符串函数概览
- ascii
- concat
- concat_ws
- char_matchcount
- encode
- find_in_set
- get_json_object
- instr
- instr1
- initcap
- keyvalue
- length
- lengthb
- levenshtein
- locate
- lower/lcase
- lpad
- ltrim
- parse_url
- printf
- regexp_count
- regexp_extract
- replace
- regexp_replace
- regexp_replace1
- regexp_instr
- regexp_substr
- repeat
- reverse
- rpad
- rtrim
- soundex
- space
- substr/substring
- substring_index
- split_part
- translate
- trim
- upper/ucase
- 数学函数
- 聚合函数
- 分析窗口函数
- 其他函数
-
日期函数
- SELECT
-
标示符
- aggregate_func
- alias
- attr_expr
- attr_expr_list
- attrs_value_set_expr
- boolean_expression
- class_name
- col
- col_comment
- col_name
- col_name_list
- condition
- condition_list
- cte_name
- data_type
- db_comment
- db_name
- else_result_expression
- file_format
- file_path
- function_name
- groupby_expression
- having_condition
- hdfs_path
- input_expression
- input_format_classname
- jar_path
- join_condition
- non_equi_join_condition
- number
- num_buckets
- output_format_classname
- partition_col_name
- partition_col_value
- partition_specs
- property_name
- property_value
- regex_expression
- result_expression
- row_format
- select_statement
- separator
- serde_name
- sql_containing_cte_name
- sub_query
- table_comment
- table_name
- table_properties
- table_reference
- view_name
- view_properties
- when_expression
- where_condition
- window_function
- 运算符
-
Flink SQL语法参考
- Flink Opensource SQL1.15语法参考
- Flink Opensource SQL1.12语法参考
- Flink Opensource SQL1.10语法参考
-
HetuEngine SQL语法参考
-
HetuEngine SQL语法
- 使用前必读
- 数据类型
-
DDL 语法
- CREATE SCHEMA
- CREATE TABLE
- CREATE TABLE AS
- CREATE TABLE LIKE
- CREATE VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER SCHEMA
- DROP SCHEMA
- DROP TABLE
- DROP VIEW
- TRUNCATE TABLE
- COMMENT
- VALUES
- SHOW语法使用概要
- SHOW SCHEMAS(DATABASES)
- SHOW TABLES
- SHOW TBLPROPERTIES TABLE|VIEW
- SHOW TABLE/PARTITION EXTENDED
- SHOW FUNCTIONS
- SHOW PARTITIONS
- SHOW COLUMNS
- SHOW CREATE TABLE
- SHOW VIEWS
- SHOW CREATE VIEW
- DML 语法
- DQL 语法
- 辅助命令语法
- 预留关键字
- SQL函数和操作符
- 数据类型隐式转换
- 附录
-
HetuEngine SQL语法
- Hudi SQL语法参考
- Delta SQL语法参考
-
Spark SQL语法参考
-
API参考
- API使用前必读
- API概览
- 如何调用API
- API快速入门
- 权限相关API
- 全局变量相关API
- 资源标签相关API
- 增强型跨源连接相关API
- 跨源认证相关API
- 弹性资源池相关API
- 队列相关API(推荐)
- SQL作业相关API
- SQL模板相关API
- Flink作业相关API
- Flink作业模板相关API
- Flink作业管理相关API
- Spark作业相关API
- Spark作业模板相关API
- 权限策略和授权项
- 历史API
- 公共参数
- SDK参考
- 场景代码示例
-
常见问题
- DLI产品咨询类
- DLI弹性资源池和队列类
-
DLI数据库和表类
- 为什么在DLI控制台中查询不到表?
- OBS表压缩率较高怎么办?
- 字符码不一致导致数据乱码怎么办?
- 删除表后再重新创建同名的表,需要对操作该表的用户和项目重新赋权吗?
- DLI分区内表导入的文件不包含分区列的数据,导致数据导入完成后查询表数据失败怎么办?
- 创建OBS外表,由于OBS文件中的某字段存在换行符导致表字段数据错误怎么办?
- join表时没有添加on条件,造成笛卡尔积查询,导致队列资源爆满,作业运行失败怎么办?
- 手动在OBS表的分区目录下添加了数据,但是无法查询到数据怎么办?
- 为什么insert overwrite覆盖分区表数据的时候,覆盖了全量数据?
- 跨源连接RDS表中create_date字段类型是datetime,为什么DLI中查出来的是时间戳呢?
- SQL作业执行完成后,修改表名导致datasize不正确怎么办?
- 从DLI导入数据到OBS,数据量不一致怎么办?
-
增强型跨源连接类
- 增强型跨源连接绑定队列失败怎么办?
- DLI增强型跨源连接DWS失败怎么办?
- 创建跨源成功但测试网络连通性失败怎么办?
- 怎样配置DLI队列与数据源的网络连通?
- 为什么DLI增强型跨源连接要创建对等连接?
- DLI创建跨源连接,绑定队列一直在创建中怎么办?
- 新建跨源连接,显示已激活,但使用时提示communication link failure错误怎么办?
- 跨源访问MRS HBase,连接超时,日志未打印错误怎么办?
- DLI跨源连接报错找不到子网怎么办?
- 跨源RDS表,执行insert overwrite提示Incorrect string value错误怎么办?
- 创建RDS跨源表提示空指针错误怎么办?
- 对跨源DWS表执行insert overwrite操作,报错:org.postgresql.util.PSQLException: ERROR: tuple concurrently updated
- 通过跨源表向CloudTable Hbase表导入数据,executor报错:RegionTooBusyException
- 通过DLI跨源写DWS表,非空字段出现空值异常怎么办?
- 更新跨源目的端源表后,未同时更新对应跨源表,导致insert作业失败怎么办?
- RDS表有自增主键时怎样在DLI插入数据?
-
SQL作业类
- SQL作业开发类
-
SQL作业运维类
- 用户导表到OBS报“path obs://xxx already exists”错误
- 对两个表进行join操作时,提示:SQL_ANALYSIS_ERROR: Reference 't.id' is ambiguous, could be: t.id, t.id.;
- 执行查询语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
- 执行查询语句报错:There should be at least one partition pruning predicate on partitioned table XX.YYY
- LOAD数据到OBS外表报错:IllegalArgumentException: Buffer size too small. size
- SQL作业运行报错:DLI.0002 FileNotFoundException
- 用户通过CTAS创建hive表报schema解析异常错误
- 在DataArts Studio上运行DLI SQL脚本,执行结果报org.apache.hadoop.fs.obs.OBSIOException错误
- 使用CDM迁移数据到DLI,迁移作业日志上报UQUERY_CONNECTOR_0001:Invoke DLI service api failed错误
- SQL作业访问报错:File not Found
- SQL作业访问报错:DLI.0003: AccessControlException XXX
- SQL作业访问外表报错:DLI.0001: org.apache.hadoop.security.AccessControlException: verifyBucketExists on {{桶名}}: status [403]
- 执行SQL语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
-
Flink作业类
- Flink作业咨询类
-
Flink SQL作业类
- 怎样将OBS表映射为DLI的分区表?
- Flink SQL作业Kafka分区数增加或减少,怎样不停止Flink作业实现动态感知?
- 在Flink SQL作业中创建表使用EL表达式,作业运行提示DLI.0005错误怎么办?
- Flink作业输出流写入数据到OBS,通过该OBS文件路径创建的DLI表查询无数据
- Flink SQL作业运行失败,日志中有connect to DIS failed java.lang.IllegalArgumentException: Access key cannot be null错误
- Flink SQL作业消费Kafka后sink到es集群,作业执行成功,但未写入数据
- Flink Opensource SQL如何解析复杂嵌套 JSON?
- Flink Opensource SQL从RDS数据库读取的时间和RDS数据库存储的时间为什么会不一致?
- Flink Opensource SQL Elasticsearch结果表failure-handler参数填写retry_rejected导致提交失败
- Kafka Sink配置发送失败重试机制
- 如何在一个Flink作业中将数据写入到不同的Elasticsearch集群中?
- 作业语义检验时提示DIS通道不存在怎么处理?
- Flink jobmanager日志一直报Timeout expired while fetching topic metadata怎么办?
- Flink Jar作业类
- Flink作业性能调优类
-
Spark作业相类
- Spark作业开发类
-
Spark作业运维类
- 运行Spark作业报java.lang.AbstractMethodError
- Spark作业访问OBS数据时报ResponseCode: 403和ResponseStatus: Forbidden错误
- 有访问OBS对应的桶的权限,但是Spark作业访问时报错 verifyBucketExists on XXXX: status [403]
- Spark作业运行大批量数据时上报作业运行超时异常错误
- 使用Spark作业访问sftp中的文件,作业运行失败,日志显示访问目录异常
- 执行作业的用户数据库和表权限不足导致作业运行失败
- 为什么Spark3.x的作业日志中打印找不到global_temp数据库
- 在使用Spark2.3.x访问元数据时,DataSource语法创建avro类型的OBS表创建失败
- DLI资源配额类
- DLI权限管理类
- DLI API类
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
Hudi表索引设计规范
规则
- 禁止修改表索引类型。
Hudi表的索引会决定数据存储方式,随意修改索引类型会导致表中已有的存量数据与新增数据之间出现数据重复和数据准确性问题。常见的索引类型如下:
- 布隆索引:Spark引擎独有索引,采用bloomfiter机制,将布隆索引内容写入到Parquet文件的footer中。
- Bucket索引:在写入数据过程中,通过主键进行Hash计算,将数据进行分桶写入;该索引写入速度最快,但是需要合理配置分桶数目;Flink、Spark均支持该索引写入。
- 状态索引:Flink引擎独有索引,是将行记录的存储位置记录到状态后端的一种索引形式,在作业冷启动过程中会遍历所有数据存储文件生成索引信息。
- 用Flink状态索引,Flink写入后,不支持Spark继续写入。
Flink在写Hudi的MOR表只会生成log文件,后续通过compaction操作,将log文件转为parquet文件。Spark在更新Hudi表时严重依赖parquet文件是否存在,如果当前Hudi表写的是log文件,采用Spark写入就会导致重复数据的产生。在批量初始化阶段 ,先采用Spark批量写入Hudi表,再用Flink基于Flink状态索引写入不会有问题,原因是Flink冷启动的时候会遍历所有的数据文件生成状态索引。
- 实时入湖场景中,Spark引擎采用Bucket索引,Flink引擎可以用Bucket索引或者状态索引。
实时入湖都是需要分钟内或者分钟级的高性能入湖,索引的选择会影响到写Hudi表的性能。在性能方面各个索引的区别如下:
- Bucket索引
优点:写入过程中对主键进行hash分桶写入,性能比较高,不受表的数据量限制。Flink和Spark引擎都支持,Flink和Spark引擎可以实现交叉混写同一张表。
缺点:Bucket个数不能动态调整,数据量波动和整表数据量持续上涨会导致单个Bucket数据量过大出现大数据文件。需要结合分区表来进行平衡改善。
- Flink状态索引
优点:主键的索引信息存在状态后端,数据更新只需要点查状态后端即可,速度较快;同时生成的数据文件大小稳定,不会产生小文件、超大文件问题。
缺点:该索引为Flink特有索引。在表的总数据行数达到数亿级别,需要优化状态后端参数来保持写入的性能。使用该索引无法支持Flink和Spark交叉混写。
- Bucket索引
- 对于数据总量持续上涨的表,采用Bucket索引时,须使用时间分区,分区键采用数据创建时间。
参照Flink状态索引的特点,Hudi表超过一定数据量后,Flink作业状态后端压力很大,需要优化状态后端参数才能维持性能;同时由于Flink冷启动的时候需要遍历全表数据,大数据量也会导致Flink作业启动缓慢。因此基于简化使用的角度,针对大数据量的表,可以通过采用Bucket索引来避免状态后端的复杂调优。
如果Bucket索引+分区表的模式无法平衡Bueckt桶过大的问题,还是可以继续采用Flink状态索引,按照规范去优化对应的配置参数即可。
建议
- 基于Flink的流式写入的表,在数据量超过2亿条记录,采用Bucket索引,2亿以内可以采用Flink状态索引。
参照Flink状态索引的特点,Hudi表超过一定数据量后,Flink作业状态后端压力很大,需要优化状态后端参数才能维持性能;同时由于Flink冷启动的时候需要遍历全表数据,大数据量也会导致Flink作业启动缓慢。因此基于简化使用的角度,针对大数据量的表,可以通过采用Bucket索引来避免状态后端的复杂调优。
如果Bucket索引+分区表的模式无法平衡Bueckt桶过大的问题,还是可以继续采用Flink状态索引,按照规范去优化对应的配置参数即可。
- 基于Bucket索引的表,按照单个Bucket 2GB数据量进行设计。
为了规避单个Bucket过大,建议单个Bucket的数据量不要超过2GB(该2GB是指数据内容大小,不是指数据行数也不是parquet的数据文件大小),目的是将对应的桶的Parquet文件大小控制在256MB范围内(平衡读写内存消耗和HDFS存储有效利用),因此可以看出2GB的这个限制只是一个经验值,因为不同的业务数据经过列存压缩后大小是不一样的。
为什么建议是2GB?
- 2GB的数据存储成列存Parquet文件后,大概的数据文件大小是150MB ~ 256MB左右。不同业务数据会有出入。而HDFS单个数据块一般会是128MB,这样可以有效地利用存储空间。
- 数据读写占用的内存空间都是原始数据大小(包括空值也是会占用内存的),2GB在大数据计算过程中,处于单task读写可接受范围之内。
如果是单个Bucket的数据量超过了该值范围,可能会有什么影响?
- 读写任务可能会出现OOM的问题,解决方法就是提升单个task的内存占比。
- 读写性能下降,因为单个task的处理的数据量变大,导致处理耗时变大。