网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts 盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts 盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务

pyspark样例代码

更新时间:2025-02-17 GMT+08:00
分享

前提条件

在DLI管理控制台上已完成创建跨源连接。具体操作请参考《数据湖探索用户指南》。

CSS非安全集群

  • 开发说明
    • 代码实现详解
      1. import相关依赖包
        1
        2
        3
        from __future__ import print_function
        from pyspark.sql.types import StructType, StructField, IntegerType, StringType, Row
        from pyspark.sql import SparkSession
        
      2. 创建会话
        1
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
        
    • 通过DataFrame API 访问
      1. 连接配置
        1
        2
        resource = "/mytest"
        nodes = "to-css-1174404953-hDTx3UPK.datasource.com:9200"
        
        说明:

        resource为指定在CSS关联的资源名。格式可以用"/index/type"指定资源位置(可简单理解index为database,type为table,但绝不等同)。

        • ES 6.X版本中,单个Index只支持唯一type,type名可以自定义。
        • ES 7.X版本中,单个Index将使用“_doc”作为type名,不再支持自定义。若访问ES 7.X版本时,该参数只需要填写index即可。
      2. 构造schema,并添加数据
        1
        2
        3
        schema = StructType([StructField("id", IntegerType(), False),                  
                             StructField("name", StringType(), False)])
        rdd = sparkSession.sparkContext.parallelize([Row(1, "John"), Row(2, "Bob")])
        
      3. 构造DataFrame
        1
        dataFrame = sparkSession.createDataFrame(rdd, schema)
        
      4. 保存数据到CSS
        1
        dataFrame.write.format("css").option("resource", resource).option("es.nodes", nodes).mode("Overwrite").save()
        
        说明:

        mode 有四种保存类型:

        • ErrorIfExis:如果已经存在数据,则抛出异常。
        • Overwrite:如果已经存在数据,则覆盖原数据。
        • Append:如果已经存在数据,则追加保存。
        • Ignore:如果已经存在数据,则不做操作。这类似于SQL中的“如果不存在则创建表”。
      5. 读取CSS上的数据
        1
        2
        jdbcDF = sparkSession.read.format("css").option("resource", resource).option("es.nodes", nodes).load()
        jdbcDF.show()
        
      6. 操作结果

    • 通过SQL API 访问
      1. 创建DLI跨源访问 CSS的关联表。
        1
        2
        3
        4
        5
        sparkSession.sql(
            "create table css_table(id long, name string) using css options(  
            'es.nodes'='to-css-1174404953-hDTx3UPK.datasource.com:9200',
            'es.nodes.wan.only'='true',
            'resource'='/mytest')")
        
        说明:

        创建CSS跨源表的参数详情可参考表1

      2. 插入数据
        1
        sparkSession.sql("insert into css_table values(3,'tom')")
        
      3. 查询数据
        1
        2
        jdbcDF = sparkSession.sql("select * from css_table")
        jdbcDF.show()
        
      4. 操作结果

    • 提交Spark作业
      1. 将写好的python代码文件上传至OBS桶中。
      2. 在Spark作业编辑器中选择对应的Module模块并执行Spark作业。
        说明:
        • 如果选择Spark版本为2.3.2(即将下线)或2.4.5提交作业时,需要指定Module模块,名称为:sys.datasource.css。
        • 如果选择Spark版本为3.1.1及以上版本时,无需选择Module模块, 需在 “Spark参数(--conf)” 配置

          spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*

          spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*

        • 通过控制台提交作业请参考《数据湖探索用户指南》中的“选择依赖资源参数说明”。
        • 通过API提交作业请参考《数据湖探索API参考》>《创建批处理作业》中“表2-请求参数说明”关于“modules”参数的说明。
  • 完整示例代码
    • 通过DataFrame API 访问
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      # _*_ coding: utf-8 _*_
      from __future__ import print_function
      from pyspark.sql.types import Row, StructType, StructField, IntegerType, StringType
      from pyspark.sql import SparkSession
      
      if __name__ == "__main__":
        # Create a SparkSession session.   
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
      
        # Setting cross-source connection parameters  
        resource = "/mytest"
        nodes = "to-css-1174404953-hDTx3UPK.datasource.com:9200"
      
        # Setting schema  
        schema = StructType([StructField("id", IntegerType(), False),       
                             StructField("name", StringType(), False)])
      
        # Construction data 
        rdd = sparkSession.sparkContext.parallelize([Row(1, "John"), Row(2, "Bob")])
      
        # Create a DataFrame from RDD and schema  
        dataFrame = sparkSession.createDataFrame(rdd, schema)
      
        # Write data to the CSS 
        dataFrame.write.format("css").option("resource", resource).option("es.nodes", nodes).mode("Overwrite").save()
      
        # Read data  
        jdbcDF = sparkSession.read.format("css").option("resource", resource).option("es.nodes", nodes).load()
        jdbcDF.show()
      
        # close session  
        sparkSession.stop()
      
    • 通过SQL API 访问
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      # _*_ coding: utf-8 _*_
      from __future__ import print_function
      from pyspark.sql import SparkSession
      
      if __name__ == "__main__":
        # Create a SparkSession session.  
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
      
        # Create a DLI data table for DLI-associated CSS   
        sparkSession.sql(
            "create table css_table(id long, name string) using css options( \
            'es.nodes'='to-css-1174404953-hDTx3UPK.datasource.com:9200',\
            'es.nodes.wan.only'='true',\
            'resource'='/mytest')")
      
        # Insert data into the DLI data table  
        sparkSession.sql("insert into css_table values(3,'tom')")
      
        # Read data from DLI data table   
        jdbcDF = sparkSession.sql("select * from css_table")   
        jdbcDF.show()
      
        # close session  
        sparkSession.stop()
      

CSS安全集群

  • 开发说明
    • 代码实现详解
      1. import相关依赖包
        1
        2
        3
        from __future__ import print_function
        from pyspark.sql.types import StructType, StructField, IntegerType, StringType, Row
        from pyspark.sql import SparkSession
        
      2. 创建会话并设置AK/SK
        说明:

        认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。

        1
        2
        3
        4
        5
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
        sparkSession.conf.set("fs.obs.access.key", ak)
        sparkSession.conf.set("fs.obs.secret.key", sk)
        sparkSession.conf.set("fs.obs.endpoint", enpoint)
        sparkSession.conf.set("fs.obs.connecton.ssl.enabled", "false")
        
    • 通过DataFrame API 访问
      1. 连接配置
        1
        2
        resource = "/mytest";
        nodes = "to-css-1174404953-hDTx3UPK.datasource.com:9200"
        
        说明:

        resource为指定在CSS关联的资源名。格式可以用"/index/type"指定资源位置(可简单理解index为database,type为table,但绝不等同)。

        • ES 6.X版本中,单个Index只支持唯一type,type名可以自定义。
        • ES 7.X版本中,单个Index将使用“_doc”作为type名,不再支持自定义。若访问ES 7.X版本时,该参数只需要填写index即可。
      2. 构造schema,并添加数据
        1
        2
        3
        schema = StructType([StructField("id", IntegerType(), False),                  
                             StructField("name", StringType(), False)])
        rdd = sparkSession.sparkContext.parallelize([Row(1, "John"), Row(2, "Bob")])
        
      3. 构造DataFrame
        1
        dataFrame = sparkSession.createDataFrame(rdd, schema)
        
      4. 保存数据到CSS
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        12
        dataFrame.write.format("css")
          .option("resource", resource)
          .option("es.nodes", nodes)
          .option("es.net.ssl", "true")
          .option("es.net.ssl.keystore.location", "obs://桶名/path/transport-keystore.jks")
          .option("es.net.ssl.keystore.pass", "***")
          .option("es.net.ssl.truststore.location", "obs://桶名/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")
          .option("es.net.http.auth.user", "admin")
          .option("es.net.http.auth.pass", "***")
          .mode("Overwrite")
          .save()
        
        说明:

        mode 有四种保存类型:

        • ErrorIfExis:如果已经存在数据,则抛出异常。
        • Overwrite:如果已经存在数据,则覆盖原数据。
        • Append:如果已经存在数据,则追加保存。
        • Ignore:如果已经存在数据,则不做操作。这类似于SQL中的“如果不存在则创建表”。
      5. 读取CSS上的数据
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        12
        jdbcDF = sparkSession.read.format("css")\
          .option("resource", resource)\
          .option("es.nodes", nodes)\
          .option("es.net.ssl", "true")\
          .option("es.net.ssl.keystore.location", "obs://桶名/path/transport-keystore.jks")\
          .option("es.net.ssl.keystore.pass", "***")\
          .option("es.net.ssl.truststore.location", "obs://桶名/path/truststore.jks")\
          .option("es.net.ssl.truststore.pass", "***")\
          .option("es.net.http.auth.user", "admin")\
          .option("es.net.http.auth.pass", "***")\
          .load()
        jdbcDF.show()
        
      6. 操作结果

    • 通过SQL API 访问
      1. 创建DLI跨源访问 CSS的关联表。
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        12
        sparkSession.sql(
                "create table css_table(id long, name string) using css options(\  
                'es.nodes'='to-css-1174404953-hDTx3UPK.datasource.com:9200',\
                'es.nodes.wan.only'='true',\
                'resource'='/mytest',\
        	'es.net.ssl'='true',\
        	'es.net.ssl.keystore.location'='obs://桶名/path/transport-keystore.jks',\
        	'es.net.ssl.keystore.pass'='***',\
        	'es.net.ssl.truststore.location'='obs://桶名/path/truststore.jks',\
        	'es.net.ssl.truststore.pass'='***',\
        	'es.net.http.auth.user'='admin',\
        	'es.net.http.auth.pass'='***')")
        
        说明:

        创建CSS跨源表的参数详情可参考表1

      2. 插入数据
        1
        sparkSession.sql("insert into css_table values(3,'tom')")
        
      3. 查询数据
        1
        2
        jdbcDF = sparkSession.sql("select * from css_table")
        jdbcDF.show()
        
      4. 操作结果

    • 提交Spark作业
      1. 将写好的python代码文件上传至DLI中。控制台操作请参考《数据湖探索用户指南》。API操作请参考《数据湖探索API参考》>《上传资源包》。
      2. 在Spark作业编辑器中选择对应的Module模块并执行Spark作业。控制台操作请参考《数据湖探索用户指南》。API操作请参考《数据湖探索API参考》>《创建批处理作业》。
        说明:
        • 提交作业时,需要指定Module模块,名称为:sys.datasource.css。
        • 通过控制台提交作业请参考《数据湖探索用户指南》中的“选择依赖资源参数说明”。
        • 通过API提交作业请参考《数据湖探索API参考》>《创建批处理作业》中“表2-请求参数说明”关于“modules”参数的说明。
  • 完整示例代码
    • 通过DataFrame API 访问
      说明:

      认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      # _*_ coding: utf-8 _*_
      from __future__ import print_function
      from pyspark.sql.types import Row, StructType, StructField, IntegerType, StringType
      from pyspark.sql import SparkSession
      
      if __name__ == "__main__":
        # Create a SparkSession session.   
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
        sparkSession.conf.set("fs.obs.access.key", ak)
        sparkSession.conf.set("fs.obs.secret.key", sk)
        sparkSession.conf.set("fs.obs.endpoint", enpoint)
        sparkSession.conf.set("fs.obs.connecton.ssl.enabled", "false")
      
        # Setting cross-source connection parameters  
        resource = "/mytest";
        nodes = "to-css-1174404953-hDTx3UPK.datasource.com:9200"
      
        # Setting schema  
        schema = StructType([StructField("id", IntegerType(), False),       
                             StructField("name", StringType(), False)])
      
        # Construction data 
        rdd = sparkSession.sparkContext.parallelize([Row(1, "John"), Row(2, "Bob")])
      
        # Create a DataFrame from RDD and schema  
        dataFrame = sparkSession.createDataFrame(rdd, schema)
      
        # Write data to the CSS 
        dataFrame.write.format("css")
          .option("resource", resource)
          .option("es.nodes", nodes)
          .option("es.net.ssl", "true")
          .option("es.net.ssl.keystore.location", "obs://桶名/path/transport-keystore.jks")
          .option("es.net.ssl.keystore.pass", "***")
          .option("es.net.ssl.truststore.location", "obs://桶名/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")
          .option("es.net.http.auth.user", "admin")
          .option("es.net.http.auth.pass", "***")
          .mode("Overwrite")
          .save()
      
        # Read data  
        jdbcDF = sparkSession.read.format("css")\
          .option("resource", resource)\
          .option("es.nodes", nodes)\
          .option("es.net.ssl", "true")\
          .option("es.net.ssl.keystore.location", "obs://桶名/path/transport-keystore.jks")\
          .option("es.net.ssl.keystore.pass", "***")\
          .option("es.net.ssl.truststore.location", "obs://桶名/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")\
          .option("es.net.http.auth.user", "admin")\
          .option("es.net.http.auth.pass", "***")\
          .load()
        jdbcDF.show()
      
        # close session  
        sparkSession.stop()
      
    • 通过SQL API 访问
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      # _*_ coding: utf-8 _*_
      from __future__ import print_function
      from pyspark.sql import SparkSession
      import os               
       
      if __name__ == "__main__":
        
        # Create a SparkSession session.   
        sparkSession = SparkSession.builder.appName("datasource-css").getOrCreate()
        # Create a DLI data table for DLI-associated CSS   
        sparkSession.sql("create table css_table(id int, name string) using css options(\
                          'es.nodes'='192.168.6.204:9200',\
                          'es.nodes.wan.only'='true',\
                          'resource'='/mytest',\
                          'es.net.ssl'='true',\
                          'es.net.ssl.keystore.location' = 'obs://xietest1/lzq/keystore.jks',\
                          'es.net.ssl.keystore.pass' = '**',\
                          'es.net.ssl.truststore.location'='obs://xietest1/lzq/truststore.jks',\
                          'es.net.ssl.truststore.pass'='**',\
                          'es.net.http.auth.user'='admin',\
                          'es.net.http.auth.pass'='**')")
       
        # Insert data into the DLI data table  
        sparkSession.sql("insert into css_table values(3,'tom')")
       
        # Read data from DLI data table   
        jdbcDF = sparkSession.sql("select * from css_table")   
        jdbcDF.show()
       
        # close session  
        sparkSession.stop()
      
提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容