- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- DLI作业开发流程
- 准备工作
- 创建弹性资源池和队列
- 创建数据库和表
- 数据迁移与数据传输
- 配置DLI访问其他云服务的委托权限
- 使用DLI提交SQL作业
- 使用DLI提交Flink作业
- 使用DLI提交Spark作业
- 使用Notebook实例提交DLI作业
- 使用CES监控DLI服务
- 使用AOM监控DLI服务
- 使用CTS审计DLI服务
- 权限管理
- DLI常用管理操作
- 最佳实践
-
开发指南
- 使用客户端工具连接DLI
- SQL作业开发指南
- Flink作业开发指南
- Spark Jar作业开发指南
-
语法参考
-
Spark SQL语法参考
- Spark SQL常用配置项说明
- Spark SQL语法概览
- Spark开源命令支持说明
- 数据库相关
- 表相关
- 数据相关
- 导出查询结果
- 跨源连接相关
- 视图相关
- 查看计划
- 数据权限相关
- 数据类型
- 自定义函数
-
内置函数
-
日期函数
- 日期函数概览
- add_months
- current_date
- current_timestamp
- date_add
- dateadd
- date_sub
- date_format
- datediff
- datediff1
- datepart
- datetrunc
- day/dayofmonth
- from_unixtime
- from_utc_timestamp
- getdate
- hour
- isdate
- last_day
- lastday
- minute
- month
- months_between
- next_day
- quarter
- second
- to_char
- to_date
- to_date1
- to_utc_timestamp
- trunc
- unix_timestamp
- weekday
- weekofyear
- year
-
字符串函数
- 字符串函数概览
- ascii
- concat
- concat_ws
- char_matchcount
- encode
- find_in_set
- get_json_object
- instr
- instr1
- initcap
- keyvalue
- length
- lengthb
- levenshtein
- locate
- lower/lcase
- lpad
- ltrim
- parse_url
- printf
- regexp_count
- regexp_extract
- replace
- regexp_replace
- regexp_replace1
- regexp_instr
- regexp_substr
- repeat
- reverse
- rpad
- rtrim
- soundex
- space
- substr/substring
- substring_index
- split_part
- translate
- trim
- upper/ucase
- 数学函数
- 聚合函数
- 分析窗口函数
- 其他函数
-
日期函数
- SELECT
-
标示符
- aggregate_func
- alias
- attr_expr
- attr_expr_list
- attrs_value_set_expr
- boolean_expression
- class_name
- col
- col_comment
- col_name
- col_name_list
- condition
- condition_list
- cte_name
- data_type
- db_comment
- db_name
- else_result_expression
- file_format
- file_path
- function_name
- groupby_expression
- having_condition
- hdfs_path
- input_expression
- input_format_classname
- jar_path
- join_condition
- non_equi_join_condition
- number
- num_buckets
- output_format_classname
- partition_col_name
- partition_col_value
- partition_specs
- property_name
- property_value
- regex_expression
- result_expression
- row_format
- select_statement
- separator
- serde_name
- sql_containing_cte_name
- sub_query
- table_comment
- table_name
- table_properties
- table_reference
- view_name
- view_properties
- when_expression
- where_condition
- window_function
- 运算符
-
Flink SQL语法参考
- Flink Opensource SQL1.15语法参考
- Flink Opensource SQL1.12语法参考
- Flink Opensource SQL1.10语法参考
-
HetuEngine SQL语法参考
-
HetuEngine SQL语法
- 使用前必读
- 数据类型
-
DDL 语法
- CREATE SCHEMA
- CREATE TABLE
- CREATE TABLE AS
- CREATE TABLE LIKE
- CREATE VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER SCHEMA
- DROP SCHEMA
- DROP TABLE
- DROP VIEW
- TRUNCATE TABLE
- COMMENT
- VALUES
- SHOW语法使用概要
- SHOW SCHEMAS(DATABASES)
- SHOW TABLES
- SHOW TBLPROPERTIES TABLE|VIEW
- SHOW TABLE/PARTITION EXTENDED
- SHOW FUNCTIONS
- SHOW PARTITIONS
- SHOW COLUMNS
- SHOW CREATE TABLE
- SHOW VIEWS
- SHOW CREATE VIEW
- DML 语法
- DQL 语法
- 辅助命令语法
- 预留关键字
- SQL函数和操作符
- 数据类型隐式转换
- 附录
-
HetuEngine SQL语法
- Hudi SQL语法参考
- Delta SQL语法参考
-
Spark SQL语法参考
-
API参考
- API使用前必读
- API概览
- 如何调用API
- API快速入门
- 权限相关API
- 全局变量相关API
- 资源标签相关API
- 增强型跨源连接相关API
- 跨源认证相关API
- 弹性资源池相关API
- 队列相关API(推荐)
- SQL作业相关API
- SQL模板相关API
- Flink作业相关API
- Flink作业模板相关API
- Flink作业管理相关API
- Spark作业相关API
- Spark作业模板相关API
- 权限策略和授权项
- 历史API
- 公共参数
- SDK参考
- 场景代码示例
-
常见问题
- DLI产品咨询类
- DLI弹性资源池和队列类
-
DLI数据库和表类
- 为什么在DLI控制台中查询不到表?
- OBS表压缩率较高怎么办?
- 字符码不一致导致数据乱码怎么办?
- 删除表后再重新创建同名的表,需要对操作该表的用户和项目重新赋权吗?
- DLI分区内表导入的文件不包含分区列的数据,导致数据导入完成后查询表数据失败怎么办?
- 创建OBS外表,由于OBS文件中的某字段存在换行符导致表字段数据错误怎么办?
- join表时没有添加on条件,造成笛卡尔积查询,导致队列资源爆满,作业运行失败怎么办?
- 手动在OBS表的分区目录下添加了数据,但是无法查询到数据怎么办?
- 为什么insert overwrite覆盖分区表数据的时候,覆盖了全量数据?
- 跨源连接RDS表中create_date字段类型是datetime,为什么DLI中查出来的是时间戳呢?
- SQL作业执行完成后,修改表名导致datasize不正确怎么办?
- 从DLI导入数据到OBS,数据量不一致怎么办?
-
增强型跨源连接类
- 增强型跨源连接绑定队列失败怎么办?
- DLI增强型跨源连接DWS失败怎么办?
- 创建跨源成功但测试网络连通性失败怎么办?
- 怎样配置DLI队列与数据源的网络连通?
- 为什么DLI增强型跨源连接要创建对等连接?
- DLI创建跨源连接,绑定队列一直在创建中怎么办?
- 新建跨源连接,显示已激活,但使用时提示communication link failure错误怎么办?
- 跨源访问MRS HBase,连接超时,日志未打印错误怎么办?
- DLI跨源连接报错找不到子网怎么办?
- 跨源RDS表,执行insert overwrite提示Incorrect string value错误怎么办?
- 创建RDS跨源表提示空指针错误怎么办?
- 对跨源DWS表执行insert overwrite操作,报错:org.postgresql.util.PSQLException: ERROR: tuple concurrently updated
- 通过跨源表向CloudTable Hbase表导入数据,executor报错:RegionTooBusyException
- 通过DLI跨源写DWS表,非空字段出现空值异常怎么办?
- 更新跨源目的端源表后,未同时更新对应跨源表,导致insert作业失败怎么办?
- RDS表有自增主键时怎样在DLI插入数据?
-
SQL作业类
- SQL作业开发类
-
SQL作业运维类
- 用户导表到OBS报“path obs://xxx already exists”错误
- 对两个表进行join操作时,提示:SQL_ANALYSIS_ERROR: Reference 't.id' is ambiguous, could be: t.id, t.id.;
- 执行查询语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
- 执行查询语句报错:There should be at least one partition pruning predicate on partitioned table XX.YYY
- LOAD数据到OBS外表报错:IllegalArgumentException: Buffer size too small. size
- SQL作业运行报错:DLI.0002 FileNotFoundException
- 用户通过CTAS创建hive表报schema解析异常错误
- 在DataArts Studio上运行DLI SQL脚本,执行结果报org.apache.hadoop.fs.obs.OBSIOException错误
- 使用CDM迁移数据到DLI,迁移作业日志上报UQUERY_CONNECTOR_0001:Invoke DLI service api failed错误
- SQL作业访问报错:File not Found
- SQL作业访问报错:DLI.0003: AccessControlException XXX
- SQL作业访问外表报错:DLI.0001: org.apache.hadoop.security.AccessControlException: verifyBucketExists on {{桶名}}: status [403]
- 执行SQL语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
-
Flink作业类
- Flink作业咨询类
-
Flink SQL作业类
- 怎样将OBS表映射为DLI的分区表?
- Flink SQL作业Kafka分区数增加或减少,怎样不停止Flink作业实现动态感知?
- 在Flink SQL作业中创建表使用EL表达式,作业运行提示DLI.0005错误怎么办?
- Flink作业输出流写入数据到OBS,通过该OBS文件路径创建的DLI表查询无数据
- Flink SQL作业运行失败,日志中有connect to DIS failed java.lang.IllegalArgumentException: Access key cannot be null错误
- Flink SQL作业消费Kafka后sink到es集群,作业执行成功,但未写入数据
- Flink Opensource SQL如何解析复杂嵌套 JSON?
- Flink Opensource SQL从RDS数据库读取的时间和RDS数据库存储的时间为什么会不一致?
- Flink Opensource SQL Elasticsearch结果表failure-handler参数填写retry_rejected导致提交失败
- Kafka Sink配置发送失败重试机制
- 如何在一个Flink作业中将数据写入到不同的Elasticsearch集群中?
- 作业语义检验时提示DIS通道不存在怎么处理?
- Flink jobmanager日志一直报Timeout expired while fetching topic metadata怎么办?
- Flink Jar作业类
- Flink作业性能调优类
-
Spark作业相类
- Spark作业开发类
-
Spark作业运维类
- 运行Spark作业报java.lang.AbstractMethodError
- Spark作业访问OBS数据时报ResponseCode: 403和ResponseStatus: Forbidden错误
- 有访问OBS对应的桶的权限,但是Spark作业访问时报错 verifyBucketExists on XXXX: status [403]
- Spark作业运行大批量数据时上报作业运行超时异常错误
- 使用Spark作业访问sftp中的文件,作业运行失败,日志显示访问目录异常
- 执行作业的用户数据库和表权限不足导致作业运行失败
- 为什么Spark3.x的作业日志中打印找不到global_temp数据库
- 在使用Spark2.3.x访问元数据时,DataSource语法创建avro类型的OBS表创建失败
- DLI资源配额类
- DLI权限管理类
- DLI API类
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
JDBC
功能描述
JDBC连接器是Flink内置的Connector,提供了对MySQL、PostgreSQL等常见数据库的读写支持。表类型支持源表、结果表和维表。
类别 |
详情 |
---|---|
支持表类型 |
源表、维表、结果表 |
前提条件
- 要与实例建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。
- 如何建立增强型跨源连接,请参考《数据湖探索用户指南》中增强型跨源连接章节。
- 如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。
注意事项
- JDBC结果表如果定义了主键,将以upsert模式与外部系统交换UPDATE/DELETE消息;否则,它将以append模式与外部系统交换消息,不支持消费UPDATE/DELETE消息。
- 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。
- 认证用的username和password等硬编码到代码中或者明文存储都有很大的安全风险,建议使用DEW管理凭证。配置文件或者环境变量中密文存放,使用时解密,确保安全。Flink Opensource SQL使用DEW管理访问凭据
语法格式
create table jbdcTable ( attr_name attr_type (',' attr_name attr_type)* (','PRIMARY KEY (attr_name, ...) NOT ENFORCED) (',' watermark for rowtime_column_name as watermark-strategy_expression) ) with ( 'connector' = 'jdbc', 'url' = '', 'table-name' = '', 'username' = '', 'password' = '' );
参数说明
参数 |
是否必选 |
默认值 |
类型 |
说明 |
---|---|---|---|---|
connector |
是 |
无 |
String |
指定要使用的连接器,当前固定为'jdbc'。 |
url |
是 |
无 |
String |
数据库的URL。
|
table-name |
是 |
无 |
String |
读取数据库中的数据所在的表名。 |
driver |
否 |
无 |
String |
连接数据库所需要的驱动。如果未配置,则会自动通过URL提取。
|
username |
否 |
无 |
String |
数据库认证用户名,需要和'password'一起配置。 |
password |
否 |
无 |
String |
数据库认证密码,需要和'username'一起配置。 |
connection.max-retry-timeout |
否 |
60s |
Duration |
尝试连接数据库服务器最大重试超时时间,不应小于1s。 |
scan.partition.column |
否 |
无 |
String |
用于对输入进行分区的列名。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.num |
否 |
无 |
Integer |
分区的个数。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.lower-bound |
否 |
无 |
Integer |
第一个分区的最小值。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.partition.upper-bound |
否 |
无 |
Integer |
最后一个分区的最大值。分区扫描参数,具体请参考分区扫描功能介绍。 |
scan.fetch-size |
否 |
0 |
Integer |
每次从数据库拉取数据的行数。如果指定为0,则会忽略sql hint。 |
scan.auto-commit |
否 |
true |
Boolean |
是否设置自动提交,以确定事务中的每个statement是否自动提交 |
lookup.cache.max-rows |
否 |
无 |
Integer |
lookup cache的最大行数,如果超过该值,缓存中最先添加的条目将被标记为过期。 默认情况下,lookup cache是未开启的。具体请参考Lookup Cache功能介绍。 |
lookup.cache.ttl |
否 |
无 |
Duration |
lookup cache中每一行记录的最大存活时间,如果超过该时间,缓存中最先添加的条目将被标记为过期。 默认情况下,lookup cache是未开启的。具体请参考Lookup Cache功能介绍。 |
lookup.cache.caching-missing-key |
否 |
true |
Boolean |
是否缓存空查询结果,默认为true。具体请参考Lookup Cache功能介绍。 |
lookup.max-retries |
否 |
3 |
Integer |
查询数据库失败的最大重试次数。 |
sink.buffer-flush.max-rows |
否 |
100 |
Integer |
flush前缓存记录的最大值,可以设置为 '0' 来禁用它。 |
sink.buffer-flush.interval |
否 |
1s |
Duration |
flush间隔时间,超过该时间后异步线程将flush数据。可以设置为 '0' 来禁用它。如果想完全异步地处理缓存的flush事件,可以将 'sink.buffer-flush.max-rows' 设置为 '0' ,并配置适当的flush时间间隔。 |
sink.max-retries |
否 |
3 |
Integer |
写入到数据库失败后的最大重试次数。 |
sink.parallelism |
否 |
无 |
Integer |
用于定义JDBC sink算子的并行度。默认情况下,并行度是由框架决定,即与上游并行度一致。 |
分区扫描功能介绍
为了加速Source任务实例中的数据读取,Flink为JDBC表提供了分区扫描功能。以下参数定义了从多个任务并行读取时如何对表进行分区。
- scan.partition.column:用于对输入进行分区的列名,该列的数据类型必须是数字,日期或时间戳。
- scan.partition.num: 分区数。
- scan.partition.lower-bound:第一个分区的最小值。
- scan.partition.upper-bound:最后一个分区的最大值。
- 建表时以上扫描分区参数必须同时存在或者同时不存在。
- scan.partition.lower-bound和scan.partition.upper-bound参数仅用于决定分区步长,而不是用于过滤表中的行,表中的所有行都会被分区并返回。
Lookup Cache功能介绍
JDBC连接器可以用在时态表关联中作为一个可lookup的维表,当前只支持同步的查找模式。
默认情况下,Lookup cache是未启用的,所有请求都会发送到外部数据库。您可以设置Lookup.cache.max-rows和Lookup.cache.ttl参数来启用。Lookup cache的主要目的是用于提高时态表关联JDBC连接器的性能。
当Lookup cache被启用时,每个进程(即TaskManager)将维护一个缓存。Flink将优先查找缓存,只有当缓存未查找到时才向外部数据库发送请求,并使用返回的数据更新缓存。当缓存命中最大缓存行Lookup.cache.max-rows或当行超过最大存活时间Lookup.cache.ttl时,缓存中最先添加的条目将被标记为过期。缓存中的记录可能不是最新的,用户可以将Lookup.cache.ttl设置为一个更小的值以获得更好的刷新数据,但这可能会增加发送到数据库的请求数。所以要做好吞吐量和正确性之间的平衡。
默认情况下,Flink会缓存主键的空查询结果,您可以通过将Lookup.cache.caching-missing-key设置为false来切换行为。
数据类型映射
MySQL类型 |
PostgreSQL类型 |
Flink SQL类型 |
---|---|---|
TINYINT |
- |
TINYINT |
SMALLINT TINYINT UNSIGNED |
SMALLINT INT2 SMALLSERIAL SERIAL2 |
SMALLINT |
INT MEDIUMINT SMALLINT UNSIGNED |
INTEGER SERIAL |
INT |
BIGINT INT UNSIGNED |
BIGINT BIGSERIAL |
BIGINT |
BIGINT UNSIGNED |
- |
DECIMAL(20, 0) |
BIGINT |
BIGINT |
BIGINT |
FLOAT |
REAL FLOAT4 |
FLOAT |
DOUBLE DOUBLE PRECISION |
FLOAT8 DOUBLE PRECISION |
DOUBLE |
NUMERIC(p, s) DECIMAL(p, s) |
NUMERIC(p, s) DECIMAL(p, s) |
DECIMAL(p, s) |
BOOLEAN TINYINT(1) |
BOOLEAN |
BOOLEAN |
DATE |
DATE |
DATE |
TIME [(p)] |
TIME [(p)] [WITHOUT TIMEZONE] |
TIME [(p)] [WITHOUT TIMEZONE] |
DATETIME [(p)] |
TIMESTAMP [(p)] [WITHOUT TIMEZONE] |
TIMESTAMP [(p)] [WITHOUT TIMEZONE] |
CHAR(n) VARCHAR(n) TEXT |
CHAR(n) CHARACTER(n) VARCHAR(n) CHARACTER VARYING(n) TEXT |
STRING |
BINARY VARBINARY BLOB |
BYTEA |
BYTES |
- |
ARRAY |
ARRAY |
示例
- 示例1:使用JDBC作为数据源,Print作为结果表,从RDS MySQL数据库中读取数据,并写入到Print结果表中。
- 参考增强型跨源连接,根据RDS MySQL所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
- 设置RDS MySQL的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根RDS的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
- 登录RDS MySQL,并使用下述命令在flink库下创建orders表,并插入数据。创建数据库的操作可以参考创建RDS数据库。
在flink数据库库下创建orders表:
CREATE TABLE `flink`.`orders` ( `order_id` VARCHAR(32) NOT NULL, `order_channel` VARCHAR(32) NULL, PRIMARY KEY (`order_id`) ) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci;
插入表数据:
insert into orders( order_id, order_channel ) values ('1', 'webShop'), ('2', 'miniAppShop');
- 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业运行脚本,提交运行作业。
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
认证用的username和password硬编码到代码中或者明文存储都有很大的安全风险,建议使用DEW管理凭证。配置文件或者环境变量中密文存放,使用时解密,确保安全。Flink Opensource SQL使用DEW管理访问凭据
CREATE TABLE jdbcSource ( order_id string, order_channel string ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://MySQLAddress:MySQLPort/flink',--flink为RDS MySQL创建的数据库名 'table-name' = 'orders', 'username' = 'MySQLUsername', 'password' = 'MySQLPassword', 'scan.fetch-size' = '10', 'scan.auto-commit' = 'true' ); CREATE TABLE printSink ( order_id string, order_channel string ) WITH ( 'connector' = 'print' ); insert into printSink select * from jdbcSource;
- 查看taskmanager.out文件中的数据结果,数据结果参考如下:
+I(1,webShop) +I(2,miniAppShop)
- 示例2:使用DataGen源表发送数据,通过JDBC结果表将数据输出到MySQL数据库中。
- 参考增强型跨源连接,根据RDS MySQL所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
- 设置RDS MySQL的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根RDS的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
- 登录RDS MySQL,并使用下述命令在flink库下创建orders表,并插入数据。创建数据库的操作可以参考创建RDS数据库。
在flink数据库库下创建orders表:
CREATE TABLE `flink`.`orders` ( `order_id` VARCHAR(32) NOT NULL, `order_channel` VARCHAR(32) NULL, PRIMARY KEY (`order_id`) ) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci;
- 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业运行脚本,提交运行作业。
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
CREATE TABLE dataGenSource ( order_id string, order_channel string ) WITH ( 'connector' = 'datagen', 'fields.order_id.kind' = 'sequence', 'fields.order_id.start' = '1', 'fields.order_id.end' = '1000', 'fields.order_channel.kind' = 'random', 'fields.order_channel.length' = '5' ); CREATE TABLE jdbcSink ( order_id string, order_channel string, PRIMARY KEY(order_id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://MySQLAddress:MySQLPort/flink',--其中url中的flink表示MySQL中orders表所在的数据库名 'table-name' = 'orders', 'username' = 'MySQLUsername', 'password' = 'MySQLPassword', 'sink.buffer-flush.max-rows' = '1' ); insert into jdbcSink select * from dataGenSource;
- 查看表中数据,在MySQL中执行sql查询语句
select * from orders;
- 示例3:从DataGen源表中读取数据,将JDBC表作为维表,并将二者生成的表信息写入Print结果表中。
- 参考增强型跨源连接,根据RDS MySQL所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
- 设置RDS MySQL的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根RDS的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
- 登录RDS MySQL,并使用下述命令在flink库下创建orders表,并插入数据。创建数据库的操作可以参考创建RDS数据库。
在flink数据库库下创建orders表:
CREATE TABLE `flink`.`orders` ( `order_id` VARCHAR(32) NOT NULL, `order_channel` VARCHAR(32) NULL, PRIMARY KEY (`order_id`) ) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci;
插入表数据:
insert into orders( order_id, order_channel ) values ('1', 'webShop'), ('2', 'miniAppShop');
- 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业运行脚本,提交运行作业。该作业脚本将DataGen为数据源,JDBC作为维表,数据写入到Print结果表。
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
CREATE TABLE dataGenSource ( order_id string, order_time timestamp, proctime as Proctime() ) WITH ( 'connector' = 'datagen', 'fields.order_id.kind' = 'sequence', 'fields.order_id.start' = '1', 'fields.order_id.end' = '2' ); --创建维表 CREATE TABLE jdbcTable ( order_id string, order_channel string ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://JDBCAddress:JDBCPort/flink',--flink为RDS MySQL中orders表所在的数据库名 'table-name' = 'orders', 'username' = 'JDBCUserName', 'password' = 'JDBCPassWord', 'lookup.cache.max-rows' = '100', 'lookup.cache.ttl' = '1000', 'lookup.cache.caching-missing-key' = 'false', 'lookup.max-retries' = '5' ); CREATE TABLE printSink ( order_id string, order_time timestamp, order_channel string ) WITH ( 'connector' = 'print' ); insert into printSink SELECT dataGenSource.order_id, dataGenSource.order_time, jdbcTable.order_channel from dataGenSource left join jdbcTable for system_time as of dataGenSource.proctime on dataGenSource.order_id = jdbcTable.order_id;
- 查看taskmanager.out文件中的数据结果,数据结果参考如下:
+I(1, xxx, webShop) +I(2, xxx, miniAppShop)
常见问题
无