- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- DLI作业开发流程
- 准备工作
- 创建弹性资源池和队列
- 创建数据库和表
- 数据迁移与数据传输
- 配置DLI访问其他云服务的委托权限
- 使用DLI提交SQL作业
- 使用DLI提交Flink作业
- 使用DLI提交Spark作业
- 使用Notebook实例提交DLI作业
- 使用CES监控DLI服务
- 使用AOM监控DLI服务
- 使用CTS审计DLI服务
- 权限管理
- DLI常用管理操作
- 最佳实践
-
开发指南
- 使用客户端工具连接DLI
- SQL作业开发指南
- Flink作业开发指南
- Spark Jar作业开发指南
-
语法参考
-
Spark SQL语法参考
- Spark SQL常用配置项说明
- Spark SQL语法概览
- Spark开源命令支持说明
- 数据库相关
- 表相关
- 数据相关
- 导出查询结果
- 跨源连接相关
- 视图相关
- 查看计划
- 数据权限相关
- 数据类型
- 自定义函数
-
内置函数
-
日期函数
- 日期函数概览
- add_months
- current_date
- current_timestamp
- date_add
- dateadd
- date_sub
- date_format
- datediff
- datediff1
- datepart
- datetrunc
- day/dayofmonth
- from_unixtime
- from_utc_timestamp
- getdate
- hour
- isdate
- last_day
- lastday
- minute
- month
- months_between
- next_day
- quarter
- second
- to_char
- to_date
- to_date1
- to_utc_timestamp
- trunc
- unix_timestamp
- weekday
- weekofyear
- year
-
字符串函数
- 字符串函数概览
- ascii
- concat
- concat_ws
- char_matchcount
- encode
- find_in_set
- get_json_object
- instr
- instr1
- initcap
- keyvalue
- length
- lengthb
- levenshtein
- locate
- lower/lcase
- lpad
- ltrim
- parse_url
- printf
- regexp_count
- regexp_extract
- replace
- regexp_replace
- regexp_replace1
- regexp_instr
- regexp_substr
- repeat
- reverse
- rpad
- rtrim
- soundex
- space
- substr/substring
- substring_index
- split_part
- translate
- trim
- upper/ucase
- 数学函数
- 聚合函数
- 分析窗口函数
- 其他函数
-
日期函数
- SELECT
-
标示符
- aggregate_func
- alias
- attr_expr
- attr_expr_list
- attrs_value_set_expr
- boolean_expression
- class_name
- col
- col_comment
- col_name
- col_name_list
- condition
- condition_list
- cte_name
- data_type
- db_comment
- db_name
- else_result_expression
- file_format
- file_path
- function_name
- groupby_expression
- having_condition
- hdfs_path
- input_expression
- input_format_classname
- jar_path
- join_condition
- non_equi_join_condition
- number
- num_buckets
- output_format_classname
- partition_col_name
- partition_col_value
- partition_specs
- property_name
- property_value
- regex_expression
- result_expression
- row_format
- select_statement
- separator
- serde_name
- sql_containing_cte_name
- sub_query
- table_comment
- table_name
- table_properties
- table_reference
- view_name
- view_properties
- when_expression
- where_condition
- window_function
- 运算符
-
Flink SQL语法参考
- Flink Opensource SQL1.15语法参考
- Flink Opensource SQL1.12语法参考
- Flink Opensource SQL1.10语法参考
-
HetuEngine SQL语法参考
-
HetuEngine SQL语法
- 使用前必读
- 数据类型
-
DDL 语法
- CREATE SCHEMA
- CREATE TABLE
- CREATE TABLE AS
- CREATE TABLE LIKE
- CREATE VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER SCHEMA
- DROP SCHEMA
- DROP TABLE
- DROP VIEW
- TRUNCATE TABLE
- COMMENT
- VALUES
- SHOW语法使用概要
- SHOW SCHEMAS(DATABASES)
- SHOW TABLES
- SHOW TBLPROPERTIES TABLE|VIEW
- SHOW TABLE/PARTITION EXTENDED
- SHOW FUNCTIONS
- SHOW PARTITIONS
- SHOW COLUMNS
- SHOW CREATE TABLE
- SHOW VIEWS
- SHOW CREATE VIEW
- DML 语法
- DQL 语法
- 辅助命令语法
- 预留关键字
- SQL函数和操作符
- 数据类型隐式转换
- 附录
-
HetuEngine SQL语法
- Hudi SQL语法参考
- Delta SQL语法参考
-
Spark SQL语法参考
-
API参考
- API使用前必读
- API概览
- 如何调用API
- API快速入门
- 权限相关API
- 全局变量相关API
- 资源标签相关API
- 增强型跨源连接相关API
- 跨源认证相关API
- 弹性资源池相关API
- 队列相关API(推荐)
- SQL作业相关API
- SQL模板相关API
- Flink作业相关API
- Flink作业模板相关API
- Flink作业管理相关API
- Spark作业相关API
- Spark作业模板相关API
- 权限策略和授权项
- 历史API
- 公共参数
- SDK参考
- 场景代码示例
-
常见问题
- DLI产品咨询类
- DLI弹性资源池和队列类
-
DLI数据库和表类
- 为什么在DLI控制台中查询不到表?
- OBS表压缩率较高怎么办?
- 字符码不一致导致数据乱码怎么办?
- 删除表后再重新创建同名的表,需要对操作该表的用户和项目重新赋权吗?
- DLI分区内表导入的文件不包含分区列的数据,导致数据导入完成后查询表数据失败怎么办?
- 创建OBS外表,由于OBS文件中的某字段存在换行符导致表字段数据错误怎么办?
- join表时没有添加on条件,造成笛卡尔积查询,导致队列资源爆满,作业运行失败怎么办?
- 手动在OBS表的分区目录下添加了数据,但是无法查询到数据怎么办?
- 为什么insert overwrite覆盖分区表数据的时候,覆盖了全量数据?
- 跨源连接RDS表中create_date字段类型是datetime,为什么DLI中查出来的是时间戳呢?
- SQL作业执行完成后,修改表名导致datasize不正确怎么办?
- 从DLI导入数据到OBS,数据量不一致怎么办?
-
增强型跨源连接类
- 增强型跨源连接绑定队列失败怎么办?
- DLI增强型跨源连接DWS失败怎么办?
- 创建跨源成功但测试网络连通性失败怎么办?
- 怎样配置DLI队列与数据源的网络连通?
- 为什么DLI增强型跨源连接要创建对等连接?
- DLI创建跨源连接,绑定队列一直在创建中怎么办?
- 新建跨源连接,显示已激活,但使用时提示communication link failure错误怎么办?
- 跨源访问MRS HBase,连接超时,日志未打印错误怎么办?
- DLI跨源连接报错找不到子网怎么办?
- 跨源RDS表,执行insert overwrite提示Incorrect string value错误怎么办?
- 创建RDS跨源表提示空指针错误怎么办?
- 对跨源DWS表执行insert overwrite操作,报错:org.postgresql.util.PSQLException: ERROR: tuple concurrently updated
- 通过跨源表向CloudTable Hbase表导入数据,executor报错:RegionTooBusyException
- 通过DLI跨源写DWS表,非空字段出现空值异常怎么办?
- 更新跨源目的端源表后,未同时更新对应跨源表,导致insert作业失败怎么办?
- RDS表有自增主键时怎样在DLI插入数据?
-
SQL作业类
- SQL作业开发类
-
SQL作业运维类
- 用户导表到OBS报“path obs://xxx already exists”错误
- 对两个表进行join操作时,提示:SQL_ANALYSIS_ERROR: Reference 't.id' is ambiguous, could be: t.id, t.id.;
- 执行查询语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
- 执行查询语句报错:There should be at least one partition pruning predicate on partitioned table XX.YYY
- LOAD数据到OBS外表报错:IllegalArgumentException: Buffer size too small. size
- SQL作业运行报错:DLI.0002 FileNotFoundException
- 用户通过CTAS创建hive表报schema解析异常错误
- 在DataArts Studio上运行DLI SQL脚本,执行结果报org.apache.hadoop.fs.obs.OBSIOException错误
- 使用CDM迁移数据到DLI,迁移作业日志上报UQUERY_CONNECTOR_0001:Invoke DLI service api failed错误
- SQL作业访问报错:File not Found
- SQL作业访问报错:DLI.0003: AccessControlException XXX
- SQL作业访问外表报错:DLI.0001: org.apache.hadoop.security.AccessControlException: verifyBucketExists on {{桶名}}: status [403]
- 执行SQL语句报错:The current account does not have permission to perform this operation,the current account was restricted. Restricted for no budget.
-
Flink作业类
- Flink作业咨询类
-
Flink SQL作业类
- 怎样将OBS表映射为DLI的分区表?
- Flink SQL作业Kafka分区数增加或减少,怎样不停止Flink作业实现动态感知?
- 在Flink SQL作业中创建表使用EL表达式,作业运行提示DLI.0005错误怎么办?
- Flink作业输出流写入数据到OBS,通过该OBS文件路径创建的DLI表查询无数据
- Flink SQL作业运行失败,日志中有connect to DIS failed java.lang.IllegalArgumentException: Access key cannot be null错误
- Flink SQL作业消费Kafka后sink到es集群,作业执行成功,但未写入数据
- Flink Opensource SQL如何解析复杂嵌套 JSON?
- Flink Opensource SQL从RDS数据库读取的时间和RDS数据库存储的时间为什么会不一致?
- Flink Opensource SQL Elasticsearch结果表failure-handler参数填写retry_rejected导致提交失败
- Kafka Sink配置发送失败重试机制
- 如何在一个Flink作业中将数据写入到不同的Elasticsearch集群中?
- 作业语义检验时提示DIS通道不存在怎么处理?
- Flink jobmanager日志一直报Timeout expired while fetching topic metadata怎么办?
- Flink Jar作业类
- Flink作业性能调优类
-
Spark作业相类
- Spark作业开发类
-
Spark作业运维类
- 运行Spark作业报java.lang.AbstractMethodError
- Spark作业访问OBS数据时报ResponseCode: 403和ResponseStatus: Forbidden错误
- 有访问OBS对应的桶的权限,但是Spark作业访问时报错 verifyBucketExists on XXXX: status [403]
- Spark作业运行大批量数据时上报作业运行超时异常错误
- 使用Spark作业访问sftp中的文件,作业运行失败,日志显示访问目录异常
- 执行作业的用户数据库和表权限不足导致作业运行失败
- 为什么Spark3.x的作业日志中打印找不到global_temp数据库
- 在使用Spark2.3.x访问元数据时,DataSource语法创建avro类型的OBS表创建失败
- DLI资源配额类
- DLI权限管理类
- DLI API类
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
Hbase结果表
功能描述
DLI将作业的输出数据输出到HBase中。HBase是一个稳定可靠,性能卓越、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。HBase支持消息数据、报表数据、推荐类数据、风控类数据、日志数据、订单数据等结构化、半结构化的KeyValue数据存储。 利用DLI,用户可方便地将海量数据高速、低时延写入HBase。
前提条件
- 该场景作业需要运行在DLI的独享队列上,因此要与HBase建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。
- 如何建立增强型跨源连接,请参考《数据湖探索用户指南》中增强型跨源连接章节。
- 如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。
- 若使用MRS HBase,请在增强型跨源的主机信息中添加MRS集群所有节点的主机IP信息。
详细操作请参考《数据湖探索用户指南》中的“修改主机信息”章节描述。
- Flink跨源开发场景中直接配置跨源认证信息存在密码泄露的风险,优先推荐您使用DLI提供的跨源认证。
跨源认证简介及操作方法请参考跨源认证简介。
注意事项
- 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。
- 创建的HBase结果表的列簇必须定义为ROW类型,字段名对应列簇名(column family),嵌套的字段名对应列限定符名(column qualifier)。用户只需在表结构中声明查询中使用的的列簇和列限定符。除了ROW类型的列,剩下的原子数据类型字段(比如,STRING, BIGINT)将被识别为 HBase的rowkey,一张表中只能声明一个rowkey。rowkey字段的名字可以是任意的,如果是保留关键字,需要用反引号。
语法格式
create table hbaseSink ( attr_name attr_type (',' attr_name attr_type)* ','PRIMARY KEY (attr_name, ...) NOT ENFORCED) ) with ( 'connector' = 'hbase-2.2', 'table-name' = '', 'zookeeper.quorum' = '' );
参数说明
参数 |
是否必选 |
默认值 |
类型 |
说明 |
---|---|---|---|---|
connector |
是 |
无 |
String |
指定使用的连接器,固定为:hbase-2.2。 |
table-name |
是 |
无 |
String |
连接的HBase表名。 |
zookeeper.quorum |
是 |
无 |
String |
HBase Zookeeper实例信息,格式为:ZookeeperAddress:ZookeeperPort 以MRS Hbase集群为例,该参数的所使用Zookeeper的ip地址和端口号获取方式如下:
|
zookeeper.znode.parent |
否 |
/hbase |
String |
Zookeeper中的根目录,默认是/hbase。 |
null-string-literal |
否 |
null |
String |
当字符串值为null时的存储形式,默认存成 "null" 字符串。 HBase sink的编解码将所有数据类型(除字符串外)为null值时以空字节来存储。 |
sink.buffer-flush.max-size |
否 |
2mb |
MemorySize |
每次写入请求缓存行的最大值。 它能提升写入HBase数据库的性能,但是也可能增加延迟。 设置为 "0" 关闭此选项。 |
sink.buffer-flush.max-rows |
否 |
1000 |
Integer |
每次写入请求缓存的最大行数。 它能提升写入HBase数据库的性能,但是也可能增加延迟。 设置为 "0" 关闭此选项。 |
sink.buffer-flush.interval |
否 |
1s |
Duration |
刷新缓存的间隔,在这段时间内以异步线程刷新数据。 它能提升写入HBase数据库的性能,但是也可能增加延迟。 设置为 "0" 关闭此选项。 注意:"sink.buffer-flush.max-size" 和 "sink.buffer-flush.max-rows" 同时设置为 "0",并设置刷新缓存的间隔,则以完整的异步处理方式刷新缓存。 格式为:{length value}{time unit label},如123ms, 321s,支持的时间单位包括: d,h,min,s,ms等,默认为ms。 |
sink.parallelism |
否 |
无 |
Integer |
为 HBase sink operator 定义并行度。 默认情况下,并行度由框架决定,和连接在一起的上游operator一样。 |
krb_auth_name |
否 |
无 |
String |
DLI侧创建的Kerberos类型的跨源认证名称。 使用跨源认证则无需在作业中置账号密码。 |
数据类型映射
HBase以字节数组存储所有数据。在读和写过程中要序列化和反序列化数据。
Flink 的 HBase 连接器利用 HBase(Hadoop) 的工具类org.apache.hadoop.hbase.util.Bytes进行字节数组和Flink 数据类型转换。
Flink 的 HBase 连接器将所有数据类型(除字符串外)null值编码成空字节。对于字符串类型,null值的字面值由null-string-literal选项值决定。
Flink 数据类型 |
HBase 转换 |
---|---|
CHAR / VARCHAR / STRING |
byte[] toBytes(String s) String toString(byte[] b) |
BOOLEAN |
byte[] toBytes(boolean b) boolean toBoolean(byte[] b) |
BINARY / VARBINARY |
返回 byte[]。 |
DECIMAL |
byte[] toBytes(BigDecimal v) BigDecimal toBigDecimal(byte[] b) |
TINYINT |
new byte[] { val } bytes[0] // returns first and only byte from bytes |
SMALLINT |
byte[] toBytes(short val) short toShort(byte[] bytes) |
INT |
byte[] toBytes(int val) int toInt(byte[] bytes) |
BIGINT |
byte[] toBytes(long val) long toLong(byte[] bytes) |
FLOAT |
byte[] toBytes(float val) float toFloat(byte[] bytes) |
DOUBLE |
byte[] toBytes(double val) double toDouble(byte[] bytes) |
DATE |
从 1970-01-01 00:00:00 UTC 开始的天数,int 值。 |
TIME |
从 1970-01-01 00:00:00 UTC 开始天的毫秒数,int 值。 |
TIMESTAMP |
从 1970-01-01 00:00:00 UTC 开始的毫秒数,long 值。 |
ARRAY |
不支持 |
MAP / MULTISET |
不支持 |
ROW |
不支持 |
示例
该示例是从Kafka数据源中读取数据,并写入到HBase结果表中,其具体步骤如下(该示例中hbase的版本为1.3.1和2.2.3):
- 参考增强型跨源连接,在DLI上根据HBase和Kafka所在的虚拟私有云和子网分别创建相应的增强型跨源连接,并绑定所要使用的Flink弹性资源池。参考“修改主机信息”章节描述,在增强型跨源中增加MRS的主机信息。
- 设置HBase和Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性分别根据HBase和Kafka的地址测试队列连通性。若能连通,则表示跨源已经绑定成功,否则表示未成功。
- 参考MRS HBase的使用,通过HBase shell在HBase中创建相应的表,表名为order,表中只有一个列族detail,创建语句如下:
create 'order', {NAME => 'detail'}
- 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业脚本,并提交运行。该作业脚本将Kafka作为数据源,HBase作为结果表(Rowkey为order_id,列簇名为detail)
注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.12”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
CREATE TABLE orders ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string ) WITH ( 'connector' = 'kafka', 'topic' = 'KafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'format' = 'json' ); create table hbaseSink( order_id string, detail Row( order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string) ) with ( 'connector' = 'hbase-2.2', 'table-name' = 'order', 'zookeeper.quorum' = 'ZookeeperAddress:ZookeeperPort', 'sink.buffer-flush.max-rows' = '1' ); insert into hbaseSink select order_id, Row(order_channel,order_time,pay_amount,real_pay,pay_time,user_id,user_name,area_id) from orders;
- 连接Kafka集群,向Kafka中输入数据:
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2021-03-24 10:00:00", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"} {"order_id":"202103241606060001", "order_channel":"appShop", "order_time":"2021-03-24 16:06:06", "pay_amount":"200.00", "real_pay":"180.00", "pay_time":"2021-03-24 16:10:06", "user_id":"0001", "user_name":"Alice", "area_id":"330106"} {"order_id":"202103251202020001", "order_channel":"miniAppShop", "order_time":"2021-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2021-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
- 通过HBase shell使用下述语句查看数据结果:
scan 'order'
数据结果参考如下:202103241000000001 column=detail:area_id, timestamp=2021-12-16T21:30:37.954, value=330106 202103241000000001 column=detail:order_channel, timestamp=2021-12-16T21:30:37.954, value=webShop 202103241000000001 column=detail:order_time, timestamp=2021-12-16T21:30:37.954, value=2021-03-24 10:00:00 202103241000000001 column=detail:pay_amount, timestamp=2021-12-16T21:30:37.954, value=@Y\x00\x00\x00\x00\x00\x00 202103241000000001 column=detail:pay_time, timestamp=2021-12-16T21:30:37.954, value=2021-03-24 10:02:03 202103241000000001 column=detail:real_pay, timestamp=2021-12-16T21:30:37.954, value=@Y\x00\x00\x00\x00\x00\x00 202103241000000001 column=detail:user_id, timestamp=2021-12-16T21:30:37.954, value=0001 202103241000000001 column=detail:user_name, timestamp=2021-12-16T21:30:37.954, value=Alice 202103241606060001 column=detail:area_id, timestamp=2021-12-16T21:30:44.842, value=330106 202103241606060001 column=detail:order_channel, timestamp=2021-12-16T21:30:44.842, value=appShop 202103241606060001 column=detail:order_time, timestamp=2021-12-16T21:30:44.842, value=2021-03-24 16:06:06 202103241606060001 column=detail:pay_amount, timestamp=2021-12-16T21:30:44.842, value=@i\x00\x00\x00\x00\x00\x00 202103241606060001 column=detail:pay_time, timestamp=2021-12-16T21:30:44.842, value=2021-03-24 16:10:06 202103241606060001 column=detail:real_pay, timestamp=2021-12-16T21:30:44.842, value=@f\x80\x00\x00\x00\x00\x00 202103241606060001 column=detail:user_id, timestamp=2021-12-16T21:30:44.842, value=0001 202103241606060001 column=detail:user_name, timestamp=2021-12-16T21:30:44.842, value=Alice 202103251202020001 column=detail:area_id, timestamp=2021-12-16T21:30:52.181, value=330110 202103251202020001 column=detail:order_channel, timestamp=2021-12-16T21:30:52.181, value=miniAppShop 202103251202020001 column=detail:order_time, timestamp=2021-12-16T21:30:52.181, value=2021-03-25 12:02:02 202103251202020001 column=detail:pay_amount, timestamp=2021-12-16T21:30:52.181, value=@N\x00\x00\x00\x00\x00\x00 202103251202020001 column=detail:pay_time, timestamp=2021-12-16T21:30:52.181, value=2021-03-25 12:03:00 202103251202020001 column=detail:real_pay, timestamp=2021-12-16T21:30:52.181, value=@N\x00\x00\x00\x00\x00\x00 202103251202020001 column=detail:user_id, timestamp=2021-12-16T21:30:52.181, value=0002 202103251202020001 column=detail:user_name, timestamp=2021-12-16T21:30:52.181, value=Bob
常见问题
Q:Flink作业运行失败,作业运行日志中如下报错信息,应该怎么解决?
org.apache.zookeeper.ClientCnxn$SessionTimeoutException: Client session timed out, have not heard from server in 90069ms for connection id 0x0
A:可能是跨源连接未绑定或跨源绑定失败。参考增强型跨源连接重新配置跨源,Kafka集群安全组放通DLI队列的网段地址。