- 功能总览
- 产品介绍
- 计费说明
- 快速入门
- 用户指南
- 最佳实践
- API参考
- SDK参考
-
常见问题
- 大模型概念类问题
-
大模型微调训练类问题
- 无监督领域知识数据量无法支持增量预训练,如何进行模型学习
- 如何调整训练参数,使盘古大模型效果最优
- 如何判断盘古大模型训练状态是否正常
- 如何评估微调后的盘古大模型是否正常
- 如何调整推理参数,使盘古大模型效果最优
- 为什么微调后的盘古大模型总是重复相同的回答
- 为什么微调后的盘古大模型的回答中会出现乱码
- 为什么微调后的盘古大模型的回答会异常中断
- 为什么微调后的盘古大模型只能回答训练样本中的问题
- 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
- 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差
- 为什么多轮问答场景的盘古大模型微调效果不好
- 数据量足够,为什么盘古大模型微调效果仍然不好
- 数据量和质量均满足要求,为什么盘古大模型微调效果不好
- 大模型使用类问题
- 提示词工程类
- 文档下载
- 通用参考
本文导读
链接复制成功!
使用数据工程构建预测大模型数据集
预测大模型支持接入的数据集类型
盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。
训练预测大模型所需数据量
训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下:
- 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。
- 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。
- 顺序:表格中的行通常按照特定顺序排列。
- 行数:数据表的行数应大于5000行。
- 维度:数据的维度(列数)应大于10维。
- 数据完整性:必须确保数据中没有缺失值。
父主题: 开发盘古预测大模型