盘古大模型 PanguLargeModels
盘古大模型 PanguLargeModels
- 功能总览
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- 盘古大模型服务ModelArts Studio大模型开发平台使用流程
- 准备工作
- 在模型广场查看模型
- 使用数据工程构建数据集
- 开发盘古NLP大模型
- 开发盘古CV大模型
- 开发盘古预测大模型
- 开发盘古科学计算大模型
- 开发盘古搜索规划模型
- 开发盘古向量&重排模型
- 开发盘古行业大模型
- 开发Deepseek大模型
- 开发图像搜索模型
- 开发提示词工程
- 开发Agent应用
- 管理空间资产
- 管理资源池
- 最佳实践
- API参考
- SDK参考
-
常见问题
- 高频常见问题
- 大模型概念类
-
大模型微调训练类
- 无监督领域知识数据量无法支持增量预训练,如何进行模型学习
- 如何调整训练参数,使盘古大模型效果最优
- 如何判断盘古大模型训练状态是否正常
- 如何评估微调后的盘古大模型是否正常
- 如何调整推理参数,使盘古大模型效果最优
- 为什么微调后的盘古大模型总是重复相同的回答
- 为什么微调后的盘古大模型的回答中会出现乱码
- 为什么微调后的盘古大模型的回答会异常中断
- 为什么微调后的盘古大模型只能回答训练样本中的问题
- 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
- 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差
- 为什么多轮问答场景的盘古大模型微调效果不好
- 数据量足够,为什么盘古大模型微调效果仍然不好
- 数据量和质量均满足要求,为什么盘古大模型微调效果不好
- 大模型使用类
- 提示词工程类
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
盘古推理SDK简介
推理SDK概述
盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。
SDK分类 |
SDK功能 |
支持语言 |
使用场景 |
---|---|---|---|
推理SDK |
对话问答(/chat/completions) |
Java、Python、Go、.NET、NodeJs |
基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 |
- |
通用文本(/text/completions) |
Java、Python、Go、.NET、NodeJs、PHP |
给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 |