盘古大模型 PanguLargeModels
盘古大模型 PanguLargeModels
- 最新动态
- 功能总览
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- 盘古大模型服务ModelArts Studio大模型开发平台使用流程
- 准备工作
- 在模型广场查看模型
- 使用数据工程构建数据集
- 开发盘古NLP大模型
- 开发盘古CV大模型
- 开发盘古预测大模型
- 开发盘古科学计算大模型
- 开发盘古搜索规划模型
- 开发盘古向量&重排模型
- 开发盘古行业大模型
- 开发Deepseek大模型
- 开发图像搜索模型
- 开发提示词工程
- 开发Agent应用
- 管理空间资产
- 管理资源池
- 最佳实践
- API参考
- SDK参考
-
常见问题
- 高频常见问题
- 大模型概念类
-
大模型微调训练类
- 无监督领域知识数据量无法支持增量预训练,如何进行模型学习
- 如何调整训练参数,使盘古大模型效果最优
- 如何判断盘古大模型训练状态是否正常
- 如何评估微调后的盘古大模型是否正常
- 如何调整推理参数,使盘古大模型效果最优
- 为什么微调后的盘古大模型总是重复相同的回答
- 为什么微调后的盘古大模型的回答中会出现乱码
- 为什么微调后的盘古大模型的回答会异常中断
- 为什么微调后的盘古大模型只能回答训练样本中的问题
- 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
- 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差
- 为什么多轮问答场景的盘古大模型微调效果不好
- 数据量足够,为什么盘古大模型微调效果仍然不好
- 数据量和质量均满足要求,为什么盘古大模型微调效果不好
- 大模型使用类
- 提示词工程类
- 视频帮助
- 文档下载
- 通用参考
本文导读
展开导读
链接复制成功!
训练智能客服系统大模型需考虑哪些方面
根据智能客服场景,建议从以下方面考虑:
- 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。
- 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。
- 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案)
父主题: 大模型概念类