盘古大模型 PanguLargeModels
盘古大模型 PanguLargeModels
- 功能总览
- 产品介绍
- 计费说明
- 快速入门
- 用户指南
- 最佳实践
- API参考
- SDK参考
-
常见问题
- 大模型概念类问题
-
大模型微调训练类问题
- 无监督领域知识数据量无法支持增量预训练,如何进行模型学习
- 如何调整训练参数,使盘古大模型效果最优
- 如何判断盘古大模型训练状态是否正常
- 如何评估微调后的盘古大模型是否正常
- 如何调整推理参数,使盘古大模型效果最优
- 为什么微调后的盘古大模型总是重复相同的回答
- 为什么微调后的盘古大模型的回答中会出现乱码
- 为什么微调后的盘古大模型的回答会异常中断
- 为什么微调后的盘古大模型只能回答训练样本中的问题
- 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
- 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差
- 为什么多轮问答场景的盘古大模型微调效果不好
- 数据量足够,为什么盘古大模型微调效果仍然不好
- 数据量和质量均满足要求,为什么盘古大模型微调效果不好
- 大模型使用类问题
- 提示词工程类
- 文档下载
- 通用参考
本文导读
展开导读
链接复制成功!
模型开发
ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。
- 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。
- 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。通过自动化的评测机制,用户可以在训练过程中持续监控模型的精度、召回率等关键指标,及时发现潜在问题并优化调整。评测功能能够帮助用户在多种应用场景下验证模型的准确性与可靠性。
- 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。
- 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平台支持多种部署模式,能够满足不同场景的需求。通过灵活的API接口,模型可以无缝集成到各类应用中。
- 模型调用:在模型部署后,用户可以通过模型调用功能快速访问模型的服务。平台提供了高效的API接口,确保用户能够方便地将模型嵌入到自己的应用中,实现智能对话、文本生成等功能。
父主题: 产品功能