Agent开发平台概述
Agent开发平台简介
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。
- 针对“零码”开发者(无代码开发经验),平台提供了Prompt智能生成、插件自定义等能力,方便用户快速构建、调优、运行属于自己的大模型应用,仅需几步简单的配置即可创建属于自己的Agent应用。
- 对于“低码”开发者(有一定代码开发经验),可以通过工作流方式,适当编写一定代码,来构建逻辑复杂、且有较高稳定性要求的Agent应用,开发者也可以灵活组合各个组件,包含LLM、自定义代码、分支等组件,通过“拖拉拽”的方式快速搭建一个工作流。
Agent开发平台功能及优势
Agent平台具有能力扩展、自定义知识库、灵活的工作流设计和全链路信息调测评估等特点。
- 能力扩展:平台可以集成多种插件,插件能够有效扩展Agent的能力边界。、
- 内置插件:平台集成了各种类型的插件,包含搜索、图片理解等。支持开发者直接将插件添加到Agent中,丰富Agent的能力。
- 自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Function或者API通过配置方式快速创建为一个插件,并供Agent调用。
- 自定义知识库:平台提供了知识库功能来管理和存储数据,支持为AI应用提供自定义数据,并与之进行互动。多种格式的本地文档(支持docx、pptx和pdf等)都可以导入至知识库。
- 灵活的工作流设计:平台提供灵活的工作流设计,用于开发者处理逻辑复杂、且有较高稳定性要求的任务流。 支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。
- 全链路信息调测评估:平台提供对Agent执行过程的全链路信息观测与调试调优,通过对信息的分层分析和展示,为开发者提供了AI应用在不同层级的运行情况指导和操作,提升观测和调试效率。
Agent开发平台应用场景
当前,基于Agent平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。
- 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库、工具、规划模式等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。
- 流程型Agent:以工作流为任务执行核心,用户通过在画布上对组件进行“拖拉拽”即可搭建出任务流程,场景的组件包括LLM节点、Code节点、Branch节点等,优点是可扩展能力强,用户适当使用低码开发,缺点是对话交互智能度不高,复杂场景下分支多,难以维护。