盘古大模型 PanguLargeModels
盘古大模型 PanguLargeModels
- 功能总览
- 产品介绍
- 计费说明
- 快速入门
- 用户指南
- 最佳实践
- API参考
- SDK参考
-
常见问题
- 高频常见问题
- 大模型概念类
-
大模型微调训练类
- 无监督领域知识数据量无法支持增量预训练,如何进行模型学习
- 如何调整训练参数,使盘古大模型效果最优
- 如何判断盘古大模型训练状态是否正常
- 如何评估微调后的盘古大模型是否正常
- 如何调整推理参数,使盘古大模型效果最优
- 为什么微调后的盘古大模型总是重复相同的回答
- 为什么微调后的盘古大模型的回答中会出现乱码
- 为什么微调后的盘古大模型的回答会异常中断
- 为什么微调后的盘古大模型只能回答训练样本中的问题
- 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
- 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差
- 为什么多轮问答场景的盘古大模型微调效果不好
- 数据量足够,为什么盘古大模型微调效果仍然不好
- 数据量和质量均满足要求,为什么盘古大模型微调效果不好
- 大模型使用类
- 提示词工程类
- 文档下载
- 通用参考
本文导读
展开导读
链接复制成功!
撰写提示词
提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。
撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。
同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。
父主题: 撰写提示词