更新时间:2024-08-29 GMT+08:00
大模型的安全性需要从哪些方面展开评估和防护
盘古大模型的安全性主要从以下方面考虑:
- 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。
- 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向的意识形态。通过内容审核模块过滤违法及违背社会道德的有害信息。
- 模型安全:通过模型动态混淆技术,使模型在运行过程中保持混淆状态,有效防止结构信息和权重信息在被窃取后暴露。
- 系统安全:通过网络隔离、身份认证和鉴权、Web安全等技术保护大模型系统安全,增强自身防护能力,以抵御外部安全攻击。
父主题: 大模型概念类问题