- 最新动态
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- 如何使用图引擎服务
- 准备工作
- 权限管理
- 元数据操作
- 创建图
- 管理图
- 数据迁移
- 访问图和分析图
- 查看图任务
- 配置图操作权限
- 运维监控
- 套餐包管理
-
算法参考
- 算法一览表
- PageRank算法
- PersonalRank算法
- k核算法(k-core)
- k跳算法(k-hop)
- 最短路径算法(Shortest Path)
- 全最短路算法(All Shortest Paths)
- 带一般过滤条件最短路径(Filtered Shortest Path)
- 单源最短路算法(SSSP)
- 点集最短路(Shortest Path of Vertex Sets)
- 关联路径算法(n-Paths)
- 紧密中心度算法(Closeness Centrality)
- 标签传播算法(Label Propagation)
- Louvain算法
- 关联预测算法(Link Prediction)
- Node2vec算法
- 实时推荐算法(Real-time Recommendation)
- 共同邻居算法(Common Neighbors)
- 连通分量算法(Connected Component)
- 度数关联度算法(Degree Correlation)
- 三角计数算法(Triangle Count)
- 聚类系数算法(Cluster Coefficient)
- 中介中心度算法(Betweenness Centrality)
- 边中介中心度(Edge-betweenness Centrality)
- OD中介中心度(OD-betweenness Centrality)
- 单点环路检测(Single Vertex Circles Detection)
- 点集共同邻居(Common Neighbors of Vertex Sets)
- 点集全最短路(All Shortest Paths of Vertex Sets)
- 带一般过滤条件环路检测(filtered circle detection)
- 子图匹配(Subgraph Matching)
- 带过滤全对最短路径(Filtered All Pairs Shortest Paths)
- 带过滤全最短路径(Filtered All Shortest Paths)
- TopicRank算法
- 带过滤的n_paths算法(filtered_n_paths)
- 时序路径分析(Temporal Paths)
- 开发指南
-
API参考
- 使用前必读
- API概览
- 如何调用API
- 管理面API(V2)
-
业务面API
-
内存版
- 点操作API
- 边操作API
- 元数据操作API
- 索引操作API
- Gremlin操作API
-
算法API
- 执行算法(1.0.0)
-
算法API参数参考
- 算法公共参数
- pagerank算法(1.0.0)
- personalrank算法(1.0.0)
- k核算法(kcore)(1.0.0)
- k跳算法(k_hop)(1.0.0)
- 共同邻居(common_neighbors)(1.0.0)
- 点集共同邻居(common_neighbors_of_vertex_sets)(2.2.13)
- 关联预测(link_prediction)(1.0.0)
- 最短路径(shortest_path)(2.1.5)
- 全最短路(all_shortest_paths)(1.0.12)
- 带一般过滤条件最短路径(filtered_shortest_path)(2.2.4)
- 单源最短路(sssp)(1.0.0)
- 点集最短路(shortest_path_of_vertex_sets)(2.1.5)
- 关联路径(n_paths)(1.1.2)
- 带过滤的n_paths算法(filtered_n_paths)(2.2.22)
- 带过滤全对最短路径(filtered_all_pairs_shortest_paths)(2.2.17)
- 点集全最短路(all_shortest_paths_of_vertex_sets)(2.2.15)
- 带过滤全最短路径(filtered_all_shortest_paths)(2.2.17)
- 连通分量(connected_component)(1.0.0)
- 标签传播(label_propagation)(2.1.8)
- louvain算法(louvain)(2.2.1)
- node2vec算法(node2vec)(1.0.5)
- 实时推荐(realtime_recommendation)(2.2.21)
- 度数关联度(degree_correlation)(1.0.0)
- 三角计数(triangle_count)(1.0.0)
- 聚类系数(cluster_coefficient)(1.0.0)
- 紧密中心度(closeness)(1.0.0)
- 中介中心度算法(betweenness)(2.2.4)
- 边中介中心度(edge_betweenness)(2.2.4)
- OD中介中心度(od_betweenness)(2.2.4)
- 单点环路检测(single_vertex_circles_detection)(2.2.4)
- 带一般过滤条件环路检测(filtered_circle_detection)(2.2.15)
- 子图匹配(subgraph_matching)(2.2.16)
- topicrank算法(topicrank)(2.2.20)
- 动态图分析API
- 路径API
- 图统计API
- 图操作API
- 子图操作API
- Job管理API
- 自定义操作API
- Cypher操作API(2.2.16)
- Filtered-query API(2.2.13)
- Filtered-query V2(2.3.6)
- DSL查询API(2.3.14)
- 通过导入文件更新点边的指定属性(2.2.13)
- 通过读取文件删除点边(2.2.15)
- 运维监控API
-
持久化版
- 持久化版规格说明
- 点操作API
- 边操作API
- 元数据操作API
- 索引操作API
- HyG图管理API
-
HyG算法API
- 执行算法
-
算法API参数参考
- 算法公共参数
- pagerank算法
- personalrank算法(personalrank)
- k核算法(kcore)
- k跳算法(k_hop)
- 点集共同邻居(common_neighbors_of_vertex_sets)
- 最短路径(shortest_path)
- 全最短路(all_shortest_paths)
- 全对最短路径(all_pairs_shortest_paths)
- 单源最短路算法(sssp)
- 点集最短路(shortest_path_of_vertex_sets)
- 点集全最短路(all_shortest_paths_of_vertex_sets)
- 连通分量(connected_component)
- 三角计数算法(triangle_count)
- 紧密中心度算法(closeness)
- 中介中心度算法(betweenness)
- 边中介中心度(edge_betweenness)
- OD中介中心度(od_betweenness)
- 单点环路检测(single_vertex_circles_detection)
- topicrank算法(topicrank)
- louvain算法(louvain)
- Bigclam算法(bigclam)
- Cesna算法(cesna)
- infomap算法(infomap)
- 标签传播算法(label_propagation)
- 子图匹配算法(subgraph matching)
- 关联预测算法(link_prediction)
- n_paths算法(n_paths)
- 聚类系数算法(cluster_coefficient)
- 算法结果TXT格式说明
- 执行DSL算法
- DSL语法说明
- HyG Job管理API
- 原生算法API
- 图统计API
- 图操作API
- Job管理API
- Cypher操作API
- 交互式事务API
- 运维监控API
-
内存版
- 应用示例
- 权限策略和授权项
- 云监控服务监控指标说明
- 历史API
- 附录
- 常见问题
- 视频帮助
- 文档下载
- 通用参考
链接复制成功!
带一般过滤条件环路检测(filtered_circle_detection)(2.2.15)
请求样例
Post http://{}/ges/v1.0/1/graphs/movie/action?action_id=execute-algorithm { "algorithmName": "filtered_circle_detection", "parameters": { "n": 10, "statistics": true, "output_format":"edgeId" }, "filters": [ { }, { "operator": "out", "edge_filter": { "property_filter": { "leftvalue": { "label_name": "labelName" }, "predicate": "=", "rightvalue": { "value": "transfer" } } }, "times":5 } ] }
参数说明
参数 |
是否必选 |
说明 |
类型 |
取值范围 |
默认值 |
---|---|---|---|---|---|
sources |
否 |
查询的起始节点ID集合 |
String |
- |
标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"] |
n |
否 |
枚举的满足过滤条件的圈的个数的上限 |
Integer |
[1,100000] |
100 |
statistics |
否 |
是否输出所有满足过滤条件的圈的个数 |
Boolean |
true或false |
false |
batch_number |
否 |
批量处理的起始节点的个数 |
Integer |
[1,1000] |
10 |
output_format |
否 |
输出结果的格式 |
String |
vertexId,edgeId或edgeObject |
edgeObject |
filters |
是 |
过滤条件列表,数组的每个元素分别对应每一层要做的查询和过滤条件。 |
Object |
- |
- |
参数 |
是否必选 |
说明 |
类型 |
取值范围 |
默认值 |
---|---|---|---|---|---|
operator |
否 |
表示当前层要做的查询的方向 |
String |
out,in 或both |
out |
edge_filter |
否 |
表示当前层查询时边的过滤条件。具体格式请见 Filtered-query API中的表6 property_filter元素格式。 |
Object |
- |
- |
vertex_filter |
否 |
表示当前层查询时点的过滤条件。具体格式请见 Filtered-query API中的表6 property_filter元素格式。 |
Object |
- |
- |
times |
否 |
以相同的过滤条件查询的层数 |
Integer |
[1,10] |
1 |
- 第一层的过滤条件是对初始节点的过滤,因此仅vertex_filter参数有效。
- 最后一层的点过滤条件也是对初始节点的过滤。
- 环路的长度范围是 3-10,因此过滤层数是 4-11 层。
参数 |
是否必选 |
类型 |
说明 |
---|---|---|---|
circles |
是 |
List |
找到的圈集合。格式: [[circle1],[circle2],…], 其中circle的格式:
|
runtime |
是 |
Double |
算法运行时间。 |
n |
是 |
Integer |
枚举圈的个数的上限。 |
circle_number |
否 |
Integer |
当statistics=true时,输出所有满足条件的圈的个数。 |