云搜索服务 CSS
云搜索服务 CSS
- 最新动态
- 功能总览
- 服务公告
- 产品介绍
- 计费说明
- 快速入门
-
用户指南
- CSS服务权限管理
-
使用Elasticsearch搜索数据
- Elasticsearch使用流程
- Elasticsearch集群规划建议
- 创建Elasticsearch集群
- 访问Elasticsearch集群
- 导入数据至Elasticsearch集群
- 使用Elasticsearch集群搜索数据
- 增强Elasticsearch集群搜索能力
- 配置Elasticsearch集群网络
- 备份与恢复Elasticsearch集群数据
- 扩缩容Elasticsearch集群
- 升级Elasticsearch集群版本
- 管理Elasticsearch集群
- 管理Elasticsearch集群索引策略
- Elasticsearch集群监控与日志管理
- 查看Elasticsearch集群审计日志
- 使用OpenSearch搜索数据
- 使用Logstash迁移数据
- CSS服务资源监控
- 最佳实践
- API参考
- SDK参考
- 场景代码示例
-
常见问题
- 产品咨询
- 计费相关
- CSS集群访问
- CSS集群迁移
-
CSS集群搜索引擎使用
- CSS服务中为什么新创建的索引分片集中分配到单节点上?
- CSS服务中Elasticsearch 7.x集群如何在index下创建type?
- CSS服务中如何配置Elasticsearch索引副本数量?
- CSS服务中Elasticsearch集群分片过多会有哪些影响?
- 如何查看CSS集群的分片数以及副本数?
- CSS服务中Elasticsearch集群的节点node.roles为i表示什么意思?
- CSS服务中如何设置Elasticsearch集群的默认分页返回最大条数?
- CSS服务中如何更新Elasticsearch生命周期策略?
- CSS服务中如何设置Elasticsearch集群慢查询日志的阈值?
- CSS服务中如何清理Elasticsearch索引数据?
- CSS服务中如何清理Elasticsearch缓存?
- 使用delete_by_query命令删除Elasticsearch集群数据后,为什么磁盘使用率反而增加?
- CSS服务的Elasticsearch集群是否支持script dotProduct?
-
CSS集群管理
- 如何查看CSS集群所分布的可用区?
- CSS服务中Filebeat版本与集群版本的关系是什么?
- 如何获取CSS服务的安全证书?
- CSS服务中如何转换CER安全证书的格式?
- CSS服务中Elasticsearch和OpenSearch集群支持修改安全组吗?
- CSS服务中Elasticsearch集群如何设置search.max_buckets参数?
- CSS服务中如何修改Elasticsearch和OpenSearch集群的TLS算法?
- CSS服务中如何开启Elasticsearch和OpenSearch集群的安全审计日志?
- CSS服务中是否支持停止集群?
- CSS集群冻结索引后如何查询OBS上的索引占用量?
- 如何查看Elasticsearch和OpenSearch集群的系统默认插件列表
- CSS集群备份与恢复
- CSS集群监控与运维
-
故障排除
-
访问集群类
- 无法正常打开Kibana
- Elasticsearch针对filebeat配置调优
- Spring Boot使用Elasticsearch出现Connection reset by peer问题
- 为什么集群创建失败
- Elasticsearch集群出现写入拒绝“Bulk Reject”,如何解决?
- Elasticsearch集群创建index pattern卡住,如何解决?
- 云搜索控制台页面提示系统繁忙
- Elasticsearch集群报错:unassigned shards all indices
- es-head插件连接Elasticsearch集群报跨域错误
- 单节点集群打开Cerebro界面显示告警
- ECS无法连接到集群
- 集群不可用
- 数据导入导出类
-
功能使用类
- 无法备份索引
- 无法使用自定义词库功能
- 快照仓库找不到
- 集群一直处于快照中
- 数据量很大,如何进行快照备份?
- 集群突现load高的故障排查
- 使用ElasticSearch的HLRC(High Level Rest Client)时,报出I/O Reactor STOPPED
- Elasticsearch集群最大堆内存持续过高(超过90%)
- Elasticsearch集群更改规格失败
- 安全集群索引只读状态修改报错
- Elasticsearch集群某一节点分配不到shard
- 集群索引插入数据失败
- CSS创建索引报错“maximum shards open”
- 删除索引报错“403 Forbidden”是什么原因?
- Kibana中删除index pattern报错Forbidden
- 执行命令update-by-query报错“Trying to create too many scroll contexts”
- Elasticsearch集群无法创建pattern
- 端口访问类
-
访问集群类
- 视频帮助
- 文档下载
- 通用参考
文档首页/
云搜索服务 CSS/
用户指南/
使用Elasticsearch搜索数据/
增强Elasticsearch集群搜索能力/
配置Elasticsearch集群向量检索/
向量检索的客户端代码示例(Python)
链接复制成功!
向量检索的客户端代码示例(Python)
Elasticsearch提供了标准的REST接口,以及Java、Python等语言编写的客户端。
本节提供一份创建向量索引、导入向量数据和查询向量数据的Python代码示例,介绍如何使用客户端实现向量检索。
前提条件
客户端已经安装python依赖包。如果未安装可以执行如下命令安装:
# 根据集群实际版本填写,此处以7.6举例 pip install elasticsearch==7.6
代码示例
from elasticsearch import Elasticsearch from elasticsearch import helpers # 创建Elasticsearch客户端 def get_client(hosts: list, user: str = None, password: str = None): if user and password: return Elasticsearch(hosts, http_auth=(user, password), verify_certs=False, ssl_show_warn=False) else: return Elasticsearch(hosts) # 创建索引表 def create(client: Elasticsearch, index: str): # 索引mapping信息 index_mapping = { "settings": { "index": { "vector": "true", # 开启向量特性 "number_of_shards": 1, # 索引分片数,根据实际需求设置 "number_of_replicas": 0, # 索引副本数,根据实际需求设置 } }, "mappings": { "properties": { "my_vector": { "type": "vector", "dimension": 2, "indexing": True, "algorithm": "GRAPH", "metric": "euclidean" } # 可根据需求添加其他字段 } } } res = client.indices.create(index=index, body=index_mapping) print("create index result: ", res) # 写入数据 def write(client: Elasticsearch, index: str, vecs: list, bulk_size=500): for i in range(0, len(vecs), bulk_size): actions = [ { "_index": index, "my_vector": vec, # 可根据需求添加其他字段 } for vec in vecs[i: i+bulk_size] ] success, errors = helpers.bulk(client, actions, request_timeout=3600) if errors: print("write bulk failed with errors: ", errors) # 根据需求进行错误处理 else: print("write bulk {} docs success".format(success)) client.indices.refresh(index=index, request_timeout=3600) # 查询向量索引 def search(client: Elasticsearch, index: str, query: list, size: int): # 查询语句,可根据需求选择合适的查询方式 query_body = { "size": size, "query": { "vector": { "my_vector": { "vector": query, "topk": size } } } } res = client.search(index=index, body=query_body) print("search index result: ", res) # 删除索引 def delete(client: Elasticsearch, index: str): res = client.indices.delete(index=index) print("delete index result: ", res) if __name__ == '__main__': # 对于非安全集群,使用: es_client = get_client(hosts=['http://x.x.x.x:9200']) # 对于开启了https的安全集群,使用: # es_client = get_client(hosts=['https://x.x.x.x:9200', 'https://x.x.x.x:9200'], user='xxxxx', password='xxxxx') # 对于未开启https的安全集群,使用: # es_client = get_client(hosts=['http://x.x.x.x:9200', 'http://x.x.x.x:9200'], user='xxxxx', password='xxxxx') # 测试索引名称 index_name = "my_index" # 创建索引 create(es_client, index=index_name) # 写入数据 data = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]] write(es_client, index=index_name, vecs=data) # 查询索引 query_vector = [1.0, 1.0] search(es_client, index=index_name, query=query_vector, size=3) # 删除索引 delete(es_client, index=index_name)