网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
云手机服务器 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器(旧版)
VR云渲游平台 CVR
Huawei Cloud EulerOS
云化数据中心 CloudDC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
企业路由器 ER
企业交换机 ESW
全球加速 GA
企业连接 EC
云原生应用网络 ANC
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘平台 IEF
CloudPond云服务
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
威胁检测服务 MTD
态势感知 SA
认证测试中心 CTC
边缘安全 EdgeSec
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
湖仓构建 LakeFormation
智能数据洞察 DataArts Insight
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
API网关 APIG
分布式缓存服务 DCS
多活高可用服务 MAS
事件网格 EG
开天aPaaS
应用平台 AppStage
开天企业工作台 MSSE
开天集成工作台 MSSI
API中心 API Hub
云消息服务 KooMessage
交换数据空间 EDS
云地图服务 KooMap
云手机服务 KooPhone
组织成员账号 OrgID
云空间服务 KooDrive
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
配置审计 Config
应用身份管理服务 OneAccess
资源访问管理 RAM
组织 Organizations
资源编排服务 RFS
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
区块链
区块链服务 BCS
数字资产链 DAC
华为云区块链引擎服务 HBS
解决方案
高性能计算 HPC
SAP
混合云灾备
开天工业工作台 MIW
Haydn解决方案工厂
数字化诊断治理专家服务
价格
成本优化最佳实践
专属云商业逻辑
云生态
云商店
合作伙伴中心
华为云开发者学堂
华为云慧通差旅
其他
管理控制台
消息中心
产品价格详情
系统权限
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
云服务信任体系能力说明
开发与运维
软件开发生产线 CodeArts
需求管理 CodeArts Req
流水线 CodeArts Pipeline
代码检查 CodeArts Check
编译构建 CodeArts Build
部署 CodeArts Deploy
测试计划 CodeArts TestPlan
制品仓库 CodeArts Artifact
移动应用测试 MobileAPPTest
CodeArts IDE Online
开源镜像站 Mirrors
性能测试 CodeArts PerfTest
应用管理与运维平台 ServiceStage
云应用引擎 CAE
开源治理服务 CodeArts Governance
华为云Astro轻应用
CodeArts IDE
Astro工作流 AstroFlow
代码托管 CodeArts Repo
漏洞管理服务 CodeArts Inspector
联接 CodeArtsLink
软件建模 CodeArts Modeling
Astro企业应用 AstroPro
CodeArts盘古助手
华为云Astro大屏应用
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
云存储网关 CSG
专属分布式存储服务 DSS
数据工坊 DWR
地图数据 MapDS
键值存储服务 KVS
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
云原生服务中心 OSC
应用服务网格 ASM
华为云UCS
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB
云数据库 GeminiDB
数据管理服务 DAS
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
语音交互服务 SIS
人证核身服务 IVS
视频智能分析服务 VIAS
城市智能体
自动驾驶云服务 Octopus
盘古大模型 PanguLargeModels
IoT物联网
设备接入 IoTDA
全球SIM联接 GSL
IoT数据分析 IoTA
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
企业应用
域名注册服务 Domains
云解析服务 DNS
企业门户 EWP
ICP备案
商标注册
华为云WeLink
华为云会议 Meeting
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMA Exchange
API全生命周期管理 ROMA API
政企自服务管理 ESM
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
数字内容生产线 MetaStudio
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
专属云
专属计算集群 DCC
开发者工具
SDK开发指南
API签名指南
DevStar
华为云命令行工具服务 KooCLI
Huawei Cloud Toolkit
CodeArts API
云化转型
云架构中心
云采用框架
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
我的凭证
华为云公共事业服务云平台
工业软件
工业数字模型驱动引擎
硬件开发工具链平台云服务
工业数据转换引擎云服务
文档首页/ 云容器实例 CCI/ 最佳实践/ GPU负载/ 使用Tensorflow训练神经网络

使用Tensorflow训练神经网络

更新时间:2024-10-29 GMT+08:00
分享

应用场景

当前主流的大数据、AI训练和推理等应用(如Tensorflow、Caffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器实例中创建GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。

优势

使用容器化的方式做此类人工智能训练与推理有如下优势:

  • 容器化消除环境差异,不需要自己安装各种软件和配套版本,如python,tensorflow,cuda toolkit等软件。
  • GPU驱动免安装。
  • 低成本,按秒计费。
  • serverless带来的免VM运维。

镜像制作

tensorflow社区有tensoflow的基础镜像,已经装好了基础的tensorflow库,它分支持GPU和支持CPU两个版本,在镜像中心即可下载。

  • GPU版本地址为 tensorflow/tensorflow:1.15.0-gpu
  • CPU版本地址为 tensorflow/tensorflow:1.13.0

本文采用tensorflow官网中一个已经训练好的模型,对图片进行分类,模型名称Inception-v3。Inception-v3是在2012年ImageNet视觉识别挑战赛上训练出的模型,它将一个非常大的图片集进行了1000个种类的图片分类。Github有使用Inception-v3进行图片分类的代码。

训练模型的代码,均在工程https://gpu-demo.obs.cn-north-1.myhuaweicloud.com/gpu-demo.zip中,您需要将代码下载解压,并将代码工程打入镜像中。下面附上制作镜像的Dockerfile文件内容:

FROM tensorflow/tensorflow:1.15.0-gpu
ADD gpu-demo /home/project/gpu-demo

其中ADD将gpu-demo工程拷贝到镜像的/home/project目录下,可以根据自己需要修改。

执行docker build -t tensorflow/tensorflow:v1 . 命令制作镜像(.表示当前目录,即Dockerfile文件所在目录)。

镜像制作好后需要上传到容器镜像服务,具体步骤请参见https://support.huaweicloud.com/usermanual-swr/swr_01_0009.html

创建Tensorflow负载

  1. 登录云容器实例管理控制台。
  2. 创建GPU型命名空间,填写命名空间名称,设置好VPC和子网网段后,单击“创建”。

    图1 GPU型命名空间

  3. 左侧导航栏中选择“工作负载 > 无状态(Deployment)”,在右侧页面中单击“镜像创建”
  4. 配置负载信息。

    1. 填写基本信息,选择2创建的命名空间,Pod数量选择为“1”,选择Pod规格为“GPU加速型”,显卡的驱动版本选择“418.126”,如下所示。
      GPU Pod的详细规格和显卡驱动的说明请参见Pod规格
      图2 选择GPU容器规格
    2. 选择需要的容器镜像,这里选择的上传到镜像容器仓库的tensorflow镜像。
    3. 在容器设置下面的高级设置中,挂载一个NFS类型的文件存储卷,用于保存训练后的数据。
      图3 挂载NFS存储
    4. 在启动命令中输出执行命令和参数。
      • 可执行命令:/bin/bash
      • 参数1:-c
      • 参数2:python /home/project/gpu-demo/cifar10/cifar10_multi_gpu_train.py --num_gpus=1 --data_dir=/home/project/gpu-demo/cifar10/data --max_steps=10000 --train_dir=/tmp/sfs0/train_data; while true; do sleep 10; done

        此处 --train_dir 表示训练结果存储路径,其前缀 /tmp/sfs0 需要与4.c中设置的NFS“容器内挂载路径”路径保持一致,否则训练结果无法写入NFS中。

        --max_steps表示训练迭代的次数,这里指定了10000次迭代,完成模型训练大概耗时3分钟,如果不指定,默认是1000000次迭代,耗时会比较长。max_steps数值越大,训练时间越久,结果越精确。

      该命令是训练图片分类模型,然后单击“下一步”。

      图4 设置容器启动命令
    5. 配置负载访问信息。

      本例中选择“不启用”,单击“下一步”。

    6. 单击“提交”,然后单击“返回工作负载列表”。

      在负载列表中,待负载状态为“运行中”时,负载创建成功。

使用已有模型分类图片

  1. 单击负载名称,进入负载详情界面,选择“Pod列表>终端”Tab页。当黑色区域文本框中出现#号时,说明已登录。

    图5 Pod终端访问

  2. 进入到工程所在目录,执行python classify_image.py --model_dir=model命令,可以看到分类结果。

    # cd /home/project/gpu-demo                                                     
    # ls -l                                                                         
    total 96                                                                        
    -rw-r--r-- 1 root root  6874 Aug 30 08:09 airplane.jpg                          
    drwxr-xr-x 3 root root  4096 Sep  4 07:54 cifar10                               
    drwxr-xr-x 3 root root  4096 Aug 30 08:09 cifar10_estimator                     
    -rw-r--r-- 1 root root 30836 Aug 30 08:09 dog.jpg                               
    -rw-r--r-- 1 root root 43675 Aug 30 08:09 flower.jpg                            
    drwxr-xr-x 4 root root  4096 Sep  4 02:14 inception                             
    # cd inception                                                                  
    # python classify_image.py --model_dir=model --image_file=/home/project/gpu-demo/airplane.jpg                                  
    …
    2019-01-02 08:05:24.891201: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15131 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GiB, pci bus id: 0000:00:0a.0, compute capability: 6.0)           
    airliner (score = 0.84250)                                                      
    wing (score = 0.03228)                                                          
    space shuttle (score = 0.02524)                                                 
    warplane, military plane (score = 0.00691)                                      
    airship, dirigible (score = 0.00664)
    这里通过--image_file指定了要分类的图片,图片如下。执行结果最后几行是分类的label和对应的打分,其中有一行显示airliner(score = 0.84250),分数越高越准确,可见模型认为这个图片是一架客机。
    图6 airliner
    也可以不指定要分类的图片,默认将使用下面这张图片分类。
    图7 熊猫
    执行命令python classify_image.py ––model_dir=mode
    # python classify_image.py --model_dir=model
    …
    2019-01-02 08:02:33.271527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15131 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GiB, pci bus id: 0000:00:0a.0, compute capability: 6.0)                                   
    giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.89107)                                                                             
    indri, indris, Indri indri, Indri brevicaudatus (score = 0.00779)               
    lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00296)                                                                           
    custard apple (score = 0.00147)                                                 
    earthstar (score = 0.00117)

    执行结果显示模型认为这是一只大熊猫。

使用训练的图片分类模型

tensorflow官网中给了一个深度卷积网络的模型代码和训练数据:CIFAR-10。这是个简化的图片分类模型,将图片分成以下10类:airplane, automobile, bird, cat, deer, dog, frog, horse, ship和truck。当然给模型的图,也就是训练数据,也是这10种类型的图片。

  1. 单击负载名称,进入负载详情界面,选择“Pod列表>终端”Tab页,使用代码中提供的cifar10_eval.py校验模型的准确性,这里的checkpoint_dir指定使用刚刚训练出来的模型进行准确性校验。

    # cd /home/project/gpu-demo/cifar10
    # python cifar10_eval.py --data_dir=data --checkpoint_dir=/tmp/sfs0/train_data --run_once
    …
    2019-01-02 08:25:43.914186: precision @1 = 0.817

  2. 继续使用上面的飞机图片进行测试,这里的checkpoint_dir指定使用刚刚训练出来的模型进行图片分类,test_file指定用哪张图片测试。

    # python label_image.py --checkpoint_dir=/tmp/sfs0/train_data --test_file=/home/project/gpu-demo/airplane.jpg
        …
    2019-01-02 08:36:42.149700: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15131 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GiB, pci bus id: 0000:00:0a.0, compute capability: 6.0)                                   
    airplane (score = 4.28143)                                                      
    ship (score = 1.92319)                                                          
    cat (score = 0.03095)

    可见它准确识别出图中是架飞机。label_image.py是使用刚刚训练的模型来进行图片分类的代码。

    同时,在“Pod列表>监控”Tab页中,可以看到各种资源的使用率。

提示

您即将访问非华为云网站,请注意账号财产安全

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容