命名实体识别(基础版)
功能介绍
对文本进行命名实体识别分析,目前支持人名、地名、时间、组织机构类实体的识别。
具体Endpoint请参见终端节点。
调用华为云NLP服务会产生费用,本API支持使用基础套餐包,购买时请在自然语言处理价格计算器中查看基础套餐包和领域套餐包支持的API范围。
本API调用限制为20次/秒。
调试
您可以在API Explorer中调试该接口。
前提条件
在使用本API之前,需要您完成服务申请和认证鉴权,具体操作流程请参见申请服务和认证鉴权章节。
用户首次使用需要先申请开通。服务只需要开通一次即可,后面使用时无需再次申请。如未开通服务,调用服务时会提示ModelArts.4204报错,请在调用服务前先进入控制台开通服务,并注意开通服务区域与调用服务的区域保持一致。
URI
- URI格式
POST /v1/{project_id}/nlp-fundamental/ner
- 参数说明
表1 URI参数说明 参数名
必选
说明
project_id
是
项目ID。获取方法请参见获取项目ID。
请求消息
请求参数如表2所示。
响应消息
响应参数如表3所示。
请求示例
- 请求示例(识别分析命名实体)
POST https://{endpoint}/v1/{project_id}/nlp-fundamental/ner Request Header: Content-Type: application/json X-Auth-Token: MIINRwYJKoZIhvcNAQcCoIINODCCDTQCAQExDTALBglghkgBZQMEAgEwgguVBgkqhkiG... Request Body: { "text":"昨天程序员李小明来到北京参加开发者大赛,在比赛中表现优异,赢得了第一名。", "lang":"zh" }
- Python3语言请求代码示例(识别分析命名实体)
# -*- coding: utf-8 -*- # 此demo仅供测试使用,建议使用sdk。需提前安装requests,执行pip install requests import requests import json def nlp_demo(): url = 'https://{endpoint}/v1/{project_id}/nlp-fundamental/ner' # endpoint和project_id需替换 token = '用户对应region的token' header = { 'Content-Type': 'application/json', 'X-Auth-Token': token } body = { 'text': '昨天程序员李小明来到北京参加开发者大赛,在比赛中表现优异,赢得了第一名。', 'lang': 'zh' } resp = requests.post(url, data=json.dumps(body), headers=header) print(resp.json()) if __name__ == '__main__': nlp_demo()
- Java语言请求代码示例(识别分析命名实体)
import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.net.HttpURLConnection; import java.net.URL; /** * 此demo仅供测试使用,建议使用sdk */ public class NLPDemo { public void nlpDemo() { try { //endpoint和projectId需要替换成实际信息。 URL url = new URL("https://{endpoint}/v1/{project_id}/nlp-fundamental/ner"); String token = "对应region的token"; HttpURLConnection connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod("POST"); connection.setDoInput(true); connection.setDoOutput(true); connection.addRequestProperty("Content-Type", "application/json"); connection.addRequestProperty("X-Auth-Token", token); //输入参数 String text = "昨天程序员李小明来到北京参加开发者大赛,在比赛中表现优异,赢得了第一名。"; String body = "{\"text\":\"" + text + "\",\"lang\":\"zh\"}"; OutputStreamWriter osw = new OutputStreamWriter(connection.getOutputStream(), "UTF-8"); osw.append(body); osw.flush(); InputStream is = connection.getInputStream(); BufferedReader br = new BufferedReader(new InputStreamReader(is, "UTF-8")); while (br.ready()) { System.out.println(br.readLine()); } } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) { NLPDemo nlpDemo = new NLPDemo(); nlpDemo.nlpDemo(); } }
响应示例
- 成功响应示例
{ "named_entities": [ { "word": "昨天", "tag": "t", "offset": 0, "len": 2 }, { "word": "李小明", "tag": "nr", "offset": 5, "len": 3 }, { "word": "北京", "tag": "ns", "offset": 10, "len": 2 } ] }
- 失败响应示例
{ "error_code": "NLP.0301", "error_msg": "The length of text should be in the range of 1-2000." }
状态码
状态码请参见状态码。
错误码
错误码请参见错误码。