AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    分割 深度学习训练集 更多内容
  • 数据集版本发布失败

    标签的数据少于2张,会导致数据切分失败。建议检查您的标注信息,保证标注多标签的图片,超过2张。 数据切分后,训练和验证包含的标签类别不一样。出现这种情况的原因:多标签场景下时,做随机数据切分后,包含某一类标签的样本均被划分到训练,导致验证无该标签样本。由于这种情况出现

    来自:帮助中心

    查看更多 →

  • 模型评估

    模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据的特征数据不够理想,而此数据的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据和目标数据导入系统,详细操作请参见数据。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查

    来自:帮助中心

    查看更多 →

  • 语义分割2D

    000000.png +--- 000001.png +--- 000002.png 示例标注/推理文件 2D语义分割-palette.png 父主题: 模型数据支持

    来自:帮助中心

    查看更多 →

  • 语义分割3D

    70, 71, 72, 80, 81, 99, 252, 254], dtype=uint32) 父主题: 模型数据支持

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    在创建训练作业时,训练的输入参数位置可以直接填写OBS桶路径。 当训练数据的数据未标注或者需要进一步的数据预处理,可以先将数据导入ModelArts数据管理模块进行数据预处理。在创建训练作业时,训练的输入参数位置可以选择数据管理模块的数据。 创建调试训练作业 调试训练作业 模

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    在弹出的界面,继续配置联邦训练作业的参数,参数配置参考表1。 图3 配置参数 “数据配置文件”的“可选数据列表”: LOCAL运行环境,展示的是通过本地连接器发布的本地数据。 “训练型作业”同一个计算节点只能选一个数据,但是一个作业必须要选两个及两个以上的数据才能做训练。 表1 作业参数说明

    来自:帮助中心

    查看更多 →

  • 更新应用版本

    如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前应用各个版本的“版本名称”、“进展”、“模型精准率”、“模型

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    据处理”中对 MRS 中已标注数据进行数据处理,最后通过“运营中心>数据发布”发布数据。在“模型训练服务”中,可以订阅数据进行模型训练。 图1 标注后的数据处理流程图 父主题: 时序数据标注

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    String “代理id1.数据名1.租户别名1,代理id2.数据名2.租户别名2”格式的字符串 features 否 Array of DatasetFeatureEntity objects 所选数据特征 label_dataset 否 String 标签数据,最大长度100 label

    来自:帮助中心

    查看更多 →

  • 数据集版本不合格

    数据版本不合格 出现此问题时,表示数据版本发布成功,但是不满足自动学习训练作业要求,因此出现数据版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。

    来自:帮助中心

    查看更多 →

  • 创建横向评估型作业

    可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。 图2 新建作业 在弹出的界面,继续配置可信联邦学习作业的参数,参数配置参考表1。 图3 配置参数 “数据配置”的“可选数据列表”: 本地运行环境

    来自:帮助中心

    查看更多 →

  • 查询团队标注的样本信息

    1:置信度偏低。 2:基于训练数据的聚类结果和预测结果不一致。 3:预测结果和训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的框标注物体作为训练,进行训练输出模型。适用于一张图片中要识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构化数据的模型自动训练应用,能够对结构化数据进行分类或者数据预测。可用

    来自:帮助中心

    查看更多 →

  • 方案概述

    ;支持客户进行数据封装,打通适配模型的训练、微调、在线推理流程;支持客户进行模型的并行化改造,处理适配模型运行过程中的技术问题。 模型迁移与调优支持:调研客户业务场景,支持客户分析模型代码结构,分析迁移可行性,设计迁移方案。支持客户进行模型迁移环境部署与训练脚本改造。支持客户进

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    ignored due to the use of a custom kernel" 数据下载和预处理。 本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据。 下载数据。 wget https://huggingface.co/bigscience/mi

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了