AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 训练集噪声 更多内容
  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据进行学习训练生成新的数据的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据进行学习训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据训练。De

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    。 word2vec_path 是 word2vec模型存放在OBS上的完整路径。 示例 图片分类预测我们采用Mnist数据作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。 1 2 3 4 5 6 CREATE SOURCE

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    。 word2vec_path 是 word2vec模型存放在OBS上的完整路径。 示例 图片分类预测我们采用Mnist数据作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。 1 2 3 4 5 6 CREATE SOURCE

    来自:帮助中心

    查看更多 →

  • 创建ModelArts数据增强任务

    设置场景类别和数据处理类型 设置输入与输出。需根据实际数据情况选择“数据”或“OBS目录”。设置为“数据”时,需填写“数据名称”和“数据版本”;设置为“OBS目录”时,需填写正确的OBS路径。 图2 输入输出设置-数据 图3 输入输出设置-OBS目录 确认参数填写无误后,单击“创建”,完成数据处理任务的创建。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据进行分批读取训练时,所设定的每个批次数据大小。批量大小越

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三种算法类型,XGBoost支持“分类”和“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据作为整个作业的数据,必须选择一个当前代理的数据,另一个数据可以来自空间中的任

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据进行特征处理。 在旧版

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。 图4 异常的Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动的原因可能是由于训练数据质量差,比如数据存在噪声或者分布不均衡,导致训练过程不稳定。你可以尝试提升数据质量的方式来解决。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    性,并可在组织内共享数据。 图10 数据均衡性分析 图11 共享样本数据库管理 全流程可视化自主训练,用户可选择网络结构、数据利用云端算力进行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。 图12 新建工程

    来自:帮助中心

    查看更多 →

  • 数据集加工场景介绍

    提升模型的训练效果,使其具备更高的精度和鲁棒性。 总体而言,数据加工不仅帮助用户提升数据处理效率,还通过优化数据质量,支持高效的模型训练,帮助用户快速构建高质量的数据,推动大模型的成功开发。 支持数据加工的数据类型 当前支持加工操作的数据类型如下: 文本类数据,加工算子清单详见文本类加工算子能力清单。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;模型精度较轻量级提升约20%

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    的情况。 批量大小 一次训练所选取的样本数。 训练数据切分数量 将整个数据切分成多个子数据,依次训练,每个epoch训练一个子数据。 融合多值特征 将多值特征的多个embedding融合成一个embedding。 融合线性部分 是否使用模型架构中的线性部分。 固定哈希结构

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列的选取。标签列目前支持离散和连续型数据,只能选择一列。

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    导致训练失败或无法进行。建议完善数据后,再启动训练。 数据文件有以下限制: 如果您使用2u8g规格,测试建议数据文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。 如果您使用8u32g规格

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    流程环节 说明 1 基于微调数据进行模型微调 创建微调数据 收藏预置微调数据 对于需要个性化定制模型或者在特定任务上追求更高性能表现的场景,往往需要对大语言模型进行模型微调以适应特定任务。微调数据是模型微调的基础,通过在微调数据上进行训练从而获得改进后的新模型。 创建模型微调任务

    来自:帮助中心

    查看更多 →

  • 时序预测

    ,即从训练的数据尾部,分割出去的数据比例,示例为“0.2”。如果用户在数据界面同时上传了训练和测试,可以选择“从数据读入”,并相应选择“测试数据”和“测试数据实例”即可。 单击“加载数据”左侧的图标,加载训练和测试。 运行完成后,可以在下方看到展示的“训练数据”和“测试数据”内容。

    来自:帮助中心

    查看更多 →

  • 产品术语

    算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。 训练数据 用于训练模型的数据实例。 Y 验证数据 模型验证的数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了